Exponents

Find the last two digits of 2 100 2^{100} .


The answer is 76.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Samuel Cuadra
Oct 10, 2016

Note that 2^12 ≡ 96 (mod 100) ≡ −4 (mod 100). Thus, 2^100 ≡ (2^12)^8(2^4) (mod 100) ≡ (−4)^8 2^4 (mod 100) ≡ 2^20 (mod 100) ≡ (−4)2^8 (mod 100) ≡ 76 (mod 100)

Chew-Seong Cheong
Oct 11, 2016

As 2 and 100 are not coprime integers, we cannot apply Euler's theorem straightaway. Let us consider 2 100 mod 4 2^{100} \text{ mod } 4 and 2 100 mod 25 2^{100} \text{ mod } 25 separately, as 100 = 4 × 25 100 = 4 \times 25 .

2 100 0 (mod 4) 2 100 2 100 mod ϕ ( 25 ) (mod 25) Since gcd ( 2 , 25 ) = 1 , Euler’s theorem applies. 2 100 2 100 mod 20 (mod 25) Euler totient function ϕ ( 25 ) = 20 2 100 2 0 1 (mod 25) 25 n + 1 0 (mod 4) n + 1 0 (mod 4) n 1 (mod 4) n 3 (mod 4) 2 100 25 n + 1 (mod 100) 76 (mod 100) \begin{aligned} 2^{100} & \equiv 0 \text{ (mod 4)} \\ 2^{100} & \equiv 2^{\color{#3D99F6}{100 \text{ mod }\phi(25)}} \text{ (mod 25)} & \small \color{#3D99F6}{\text{Since }\gcd(2,25)=1 \text{, Euler's theorem applies.}} \\ 2^{100} & \equiv 2^{\color{#3D99F6}{100 \text{ mod } 20}} \text{ (mod 25)} & \small \color{#3D99F6}{\text{Euler totient function }\phi(25) = 20} \\ 2^{100} & \equiv 2^{\color{#3D99F6}{0}} \equiv 1 \text{ (mod 25)} \\ \implies 25n+1 & \equiv 0 \text{ (mod 4)} \\ n + 1 & \equiv 0 \text{ (mod 4)} \\ n & \equiv -1 \text{ (mod 4)} \\ n & \equiv 3 \text{ (mod 4)} \\ \implies 2^{100} & \equiv 25n+1 \text{ (mod 100)} \\ & \equiv \boxed{76} \text{ (mod 100)} \end{aligned}

Viki Zeta
Oct 11, 2016

2 100 = 1267650600228229401496703205376 2^{100} = 1267650600228229401496703205376

how did u get that !!??

rajdeep brahma - 4 years, 1 month ago

Log in to reply

;) Magix spell did it

Viki Zeta - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...