Exponents and Algebraic Manipulation

Algebra Level 1

{ 2 a = x 3 a = y x 2 + y 2 + 4 x y = 72 + ( x + y ) 2 \large \begin{cases} 2^a = x \\ 3^a = y \\ x^2+y^2 + 4xy = 72 + (x+y)^2 \end{cases}

Given the above, find the value of a a .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 19, 2016

Given that { x = 2 a . . . ( 1 ) y = 3 a . . . ( 2 ) x 2 + y 2 + 4 x y = 72 + ( x + y ) 2 . . . ( 3 ) \begin{cases} x = 2^a & ...(1) \\ y = 3^a & ...(2) \\ x^2+y^2 + 4xy = 72 + (x+y)^2 & ...(3) \end{cases}

( 3 ) : x 2 + y 2 + 4 x y = 72 + ( x + y ) 2 x 2 + y 2 + 4 x y = 72 + x 2 + y 2 + 2 x y 2 x y = 72 x y = 36 Substituting x = 2 a , y = 3 a ( 2 a ) ( 3 a ) = 36 6 a = 6 2 a = 2 \begin{aligned} (3): \quad x^2+y^2 + 4xy & = 72 + (x+y)^2 \\ x^2+y^2 + 4xy & = 72 + x^2+y^2 + 2xy \\ \implies 2 xy & = 72 \\ \color{#3D99F6}{xy} & = 36 & \small \color{#3D99F6}{\text{Substituting }x=2^a, \ y=3^a} \\ (2^a)(3^a) & = 36 \\ 6^a & = 6^2 \\ \implies a & = \boxed{2} \end{aligned}

hey I doubt this solution.. the answer is 1

Uchechukwu Okorie - 4 years, 10 months ago

Log in to reply

If a = 1 a=1 , then x = 2 x=2 and y = 3 y=3 , then L H S LHS = x 2 + y 2 + 4 x y = x^2+y^2+4xy = 4 + 9 + 24 = 37 = 4+9+24 = 37 but R H S RHS = 72 + ( x + y ) 2 = 72 + (x+y)^2 = 72 + 5 2 = 97 = 72+5^2 = 97 , L H S R H S \implies LHS \ne RHS , therefore, a 1 a \ne 1 . You can try that with a = 2 a=2 .

Chew-Seong Cheong - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...