Exponents in 2015

Algebra Level 5

Let a 1 , a_1, a 2 , a_2, a 3 , a_3, a 4 a_4 be complex numbers such that

a 1 + a 2 + a 3 + a 4 = 2 a 1 2 + a 2 2 + a 3 2 + a 4 2 = 0 a 1 3 + a 2 3 + a 3 3 + a 4 3 = 1 a 1 4 + a 2 4 + a 3 4 + a 4 4 = 5. \begin{aligned} a_1 + a_2 + a_3 + a_4 &= 2 \\ a_1^2 + a_2^2 + a_3^2 + a_4^2 &= 0 \\ a_1^3 + a_2^3 + a_3^3 + a_4^3 &= 1 \\ a_1^4 + a_2^4 + a_3^4 + a_4^4 &= 5. \end{aligned}

If a 1 6 + a 2 6 + a 3 6 + a 4 6 = m n a_1^6 + a_2^6 + a_3^6 + a_4^6 = \frac{m}{n} for some relatively prime positive integers m m and n , n, find m + n . m + n.


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Jan 24, 2015

Let s n = a 1 n + a 2 n + a 3 n + a 4 n . s_n = a_1^n + a_2^n + a_3^n + a_4^n. The conditions given in the problem become s 1 = 2 , s 2 = 0 , s 3 = 1 , s_1 = 2, s_2 = 0, s_3 = 1, and s 4 = 5. s_4 = 5.

Let the quartic polynomial x 4 + A x 3 + B x 2 + C x + D x^4 + Ax^3 + Bx^2 + Cx + D have roots a 1 , a 2 , a 3 , a 4 . a_1, a_2, a_3, a_4. From Newton's sums, we have

s 1 + A = 0 2 + A = 0 A = 2 s 2 + A s 1 + 2 B = 0 0 2 ( 2 ) + 2 B = 0 B = 2 s 3 + A s 2 + B s 1 + 3 C = 0 1 2 ( 0 ) + 2 ( 2 ) + 3 C = 0 C = 5 3 s 4 + A s 3 + B s 2 + C s 1 + 4 D = 0 5 2 ( 1 ) + 2 ( 0 ) 5 3 ( 2 ) + 4 D = 0 D = 1 12 . \begin{aligned} s_1 + A &= 0 \\ 2 + A &= 0 \\ A &= -2 \\ & \\ & \\ s_2 + As_1 + 2B &= 0 \\ 0 - 2(2) + 2B &= 0 \\ B &= 2 \\ & \\ & \\ s_3 + As_2 + Bs_1 + 3C &= 0 \\ 1 - 2(0) + 2(2) + 3C &= 0 \\ C &= -\frac{5}{3} \\ & \\ & \\ s_4 + As_3 + Bs_2 + Cs_1 + 4D &= 0 \\ 5 - 2(1) + 2(0) - \frac{5}{3}(2) + 4D &= 0 \\ D &= \frac{1}{12}. \end{aligned}

Thus, the polynomial x 4 2 x 3 + 2 x 2 5 3 x + 1 12 x^4 - 2x^3 + 2x^2 - \frac{5}{3}x + \frac{1}{12} has roots a 1 , a 2 , a 3 , a 4 . a_1, a_2, a_3, a_4.

We want to find s 6 . s_6. First, we find s 5 . s_5. Newton's sums gives us

s 5 2 s 4 + 2 s 3 5 3 s 2 + 1 12 s 1 = 0 s 5 2 ( 5 ) + 2 ( 1 ) 5 3 ( 0 ) + 1 12 ( 2 ) = 0 s 5 = 47 6 . \begin{aligned} s_5 - 2s_4 + 2s_3 - \frac{5}{3}s_2 + \frac{1}{12}s_1 &= 0 \\ s_5 - 2(5) + 2(1) - \frac{5}{3}(0) + \frac{1}{12}(2) &= 0 \\ s_5 &= \frac{47}{6}. \end{aligned}

Finally,

s 6 2 s 5 + 2 s 4 5 3 s 3 + 1 12 s 2 = 0 s 6 2 ( 47 6 ) + 2 ( 5 ) 5 3 ( 1 ) + 1 12 ( 0 ) = 0 s 6 = 22 3 . \begin{aligned} s_6 - 2s_5 + 2s_4 - \frac{5}{3}s_3 + \frac{1}{12}s_2 &= 0 \\ s_6 - 2 \left (\frac{47}{6} \right ) + 2(5) - \frac{5}{3}(1) + \frac{1}{12}(0) &= 0 \\ s_6 &= \frac{22}{3}. \end{aligned}

Therefore, m + n = 22 + 3 = 25 . m + n = 22 + 3 = \boxed{25}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...