Exponents in Fractions

Algebra Level 4

( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 201 4 2 ) \large \left( 1 - \dfrac1{2^2} \right)\left( 1 - \dfrac1{3^2} \right)\left( 1 - \dfrac1{4^2} \right)\cdots \left( 1 - \dfrac1{2014^2} \right)

If the value of the expression above is in the form of x y \dfrac xy , where x x and y y are coprime positive integers, find the sum of digits of x + y x+y .

16 15 14 13

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 9, 2016

Use 1 1 x 2 = ( 1 1 x ) ( 1 + 1 x ) 1-\dfrac{1}{x^2}=(1-\dfrac{1}{x})(1+\dfrac{1}{x}) .

Let P = x = 2 m ( 1 1 x 2 ) \mathfrak{P}=\displaystyle\prod_{x=2}^m\left(1-\dfrac{1}{x^2}\right) P = ( 1 2 3 2 ) ( 2 3 4 3 ) ( 3 4 5 4 ) ( m 1 m m + 1 m ) \mathfrak{P}=\left(\dfrac 12\cdot\color{#0C6AC7}{\dfrac 32}\right)\left(\color{#0C6AC7}{\dfrac 23}\cdot\color{#456461}{\dfrac 43}\right)\left(\color{#456461}{\dfrac 34}\cdot\color{goldenrod}{\dfrac 54}\right)\cdots \left(\color{#D61F06}{\dfrac{m-1}{m}}\cdot\dfrac{m+1}{m}\right) = m + 1 2 m \huge =\dfrac{m+1}{2m}

When m = 2014 m=2014 , P = 2015 4028 \large \mathfrak{P}=\dfrac{2015}{4028} 2015 + 4028 = 6043 \Large 2015+4028=6043 6 + 4 + 0 + 3 = 13 \large \therefore 6+4+0+3=\Huge\color{#456461}{\boxed{\color{#D61F06}{\boxed{\color{#007fff}{13}}}}}

Did it the same way! (+1)

Harsh Khatri - 5 years, 3 months ago

Yay! Brock won

Duh!! Triple H won

Department 8 - 5 years, 3 months ago

Log in to reply

Yup... But Roman Reigns will surely be the champion at Wrestlemania?? Are you too excited about wrestlemania?

Rishabh Jain - 5 years, 3 months ago

Log in to reply

Yes for Shane and roman

Department 8 - 5 years, 3 months ago

Exactly Same Way, and will you watch India vs New Zealand tomorrow, I have my exam on Wednesday :(

Kushagra Sahni - 5 years, 3 months ago

Log in to reply

10 exams?? ....... Let's see if match will be a good one and if India gets to chase something about 170-180 then it would be a delight to watch team India chase :-)!!

Rishabh Jain - 5 years, 3 months ago
Arihant Samar
Mar 14, 2016

The given expression can be written as:

i = 2 2014 1 1 i 2 = i = 2 2014 i 2 1 i 2 = i = 2 2014 ( i 1 ) ( i + 1 ) i × i \Huge\prod _{ i=2 }^{ 2014 }{ 1-\frac { 1 }{ { i }^{ 2 } } } =\prod _{ i=2 }^{ 2014 }{ \frac { { i }^{ 2 }-1 }{ { i }^{ 2 } } } =\prod _{ i=2 }^{ 2014 }{ \frac { (i-1)(i+1) }{ i\times i } }

i = 3 2015 i i = 1 2013 i i = 2 2014 i i = 2 2014 i = 2015 × 1 2 × 2014 = 2015 4028 \Huge\Rightarrow \frac { \prod _{ i=3 }^{ 2015 }{ i } \prod _{ i=1 }^{ 2013 }{ i } }{ \prod _{ i=2 }^{ 2014 }{ i } \prod _{ i=2 }^{ 2014 }{ i } } =\frac { 2015\times 1 }{ 2\times 2014 } =\frac { 2015 }{ 4028 }

Hence x + y = 2015 + 4028 = 6043 x+y=2015+4028=6043 . Sum of digits of 6043 = 13 6043=\color{#3D99F6}{\boxed { 13 }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...