Extensions of a triangle

Geometry Level 4

Let be A B C ABC an equilateral triangle of side 1 1 . D D and E E points on the extension of A B AB and A C AC , respectively such that A D = C E = 1 AD=CE=1 . F F is the point of interseccion between D E DE and B C BC extension.

Find the length C F CF to 3 decimal places.


The answer is 0.333333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Paola Ramírez
Aug 23, 2015

D A C \triangle DAC is isosceles with A D = A C = 1 AD=AC=1 and D A C = 120 ° A C D = A D C = 30 ° D C B = 90 ° \angle{DAC}=120°\angle{ACD}=\angle{ADC}=30°\Rightarrow \angle DCB=90° and D C B \triangle DCB is 30 ° 90 ° 60 ° D C = 3 30°-90°-60°\therefore DC=\sqrt{3} .

Then extend D C DC and draw a parallel by E E to B C BC which cuts D C DC , as image shows. C E G \triangle CEG is 30 ° 60 ° 90 ° 30°-60°-90° with C E = 1 C G = 3 2 CE=1\therefore CG=\frac{\sqrt{3}}{2} and G E = 1 2 GE=\frac{1}{2} .

D C F D G E D C D G = C F G E 3 3 3 2 = C F 1 2 C F = 2 3 × 1 2 = 1 3 0.333 \triangle DCF\sim \triangle DGE \Rightarrow \frac{DC}{DG}=\frac{CF}{GE} \rightarrow \frac{\sqrt{3}}{\frac{3\sqrt{3}}{2}}=\frac{CF}{\frac{1}{2}} \Rightarrow CF=\frac{2}{3}\times \frac{1}{2}=\boxed{\frac{1}{3}\approx 0.333}

Md Omur Faruque
Aug 23, 2015

Let, C E F = θ \boldsymbol {\angle CEF=\theta} & C F E = α \boldsymbol {\angle CFE=\alpha}

From the law of cosine we get, D E = 1 2 + 2 2 + 2 × 1 × 2 cos 12 0 = 7 \boldsymbol {DE=\sqrt{1^2+2^2+2\times1\times2\cos{120^{\circ}}}=\sqrt7} From the law of sine we get, 7 sin 12 0 = 1 sin θ \boldsymbol{\frac{\sqrt7}{\sin{120^{\circ}}}=\frac{1}{\sin{\theta}}} θ = 19.1 1 \boldsymbol {\Rightarrow \theta=19.11^{\circ}} So, α = 18 0 ( 6 0 + 19.1 1 ) = 100.8 9 \boldsymbol {\alpha=180^{\circ} -(60^{\circ} +19.11^{\circ} ) =100.89^{\circ} } Applying the law of sine one last time we get, C F sin 19.1 1 = 1 sin 100.8 9 \boldsymbol {\frac{CF} {\sin{19.11^{\circ}}}=\frac{1}{\sin{100.89^{\circ}}}} C F = sin 19.1 1 sin 100.8 9 0.333 \boldsymbol {\Rightarrow CF=\frac{\sin{19.11^{\circ}}}{\sin{100.89^{\circ}}} \approx\color{#69047E} {\boxed{0.333}} }

Hi-Five, I used exactly this same method!!

Kishore S. Shenoy - 5 years, 9 months ago
Alisina Zayeni
Dec 21, 2017

Draw a parallel by BF from A to DE at M. Then you see 2AM=BF & 2BF=AM. so you will see BF = 0.333.

Applying the theorem of Menelaus of Alexandria ( Menelaus' Theorem ), we have

A E E C C F F B B D A D = 1 \dfrac{AE}{EC}\cdot \dfrac{CF}{FB}\cdot \dfrac{BD}{AD}=1

2 1 C F 1 + C F 2 1 = 1 \dfrac{2}{1}\cdot \dfrac{CF}{1+CF}\cdot \dfrac{2}{1}=1

4 C F 1 + C F = 1 \dfrac{4CF}{1+CF}=1

3 C F = 1 3CF=1

C F = 1 3 0.3333333 CF=\dfrac{1}{3}\approx \color{#D61F06}\boxed{0.3333333}

J o i n D C . I n Δ D B C , D B = 2 , B C = 1 , D B C = 60. B C D = 90 , a n d D C = 3 . Δ D C E , D C = 3 , C E = 1 , D C E = 90 + 60 = 150. L e t E D C = α . s o C E D = 30 α . B y S i n R u l e S i n ( 30 α ) 3 = S i n ( α ) 1 . E x p a n d i n g S i n o f s u m a n d s i m p l i f y i n g , C o t ( α ) = 3 3 = D C C F . C F = 3 3 3 = . 333333 Join~ DC.~~~In~\Delta~DBC, ~~~DB=2,~~BC=1,~~\angle~DBC=60.~~~\therefore~\angle~BCD=90,~and~DC=\sqrt3.\\ \Delta~DCE,\\ DC=\sqrt3,~~CE=1,~~\angle~DCE=90+60=150. \\ Let~\angle~EDC=\alpha.~so~\angle~ CED=30-\alpha.\\ By~Sin~Rule~\dfrac{Sin(30-\alpha)} {\sqrt3}=\dfrac{Sin(\alpha)} 1.\\ Expanding~Sin~of~sum~and~simplifying,~~~Cot(\alpha)=3\sqrt3=\dfrac{DC}{CF} .\\ \implies~CF=\dfrac{\sqrt3}{3\sqrt3}=\Large \color{#D61F06}{.333333}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...