Extra conditioning

Algebra Level 5

{ a + b + c = a 2 + b 2 a b = c \begin{cases} a+b+c=a^2 +b^2 \\ ab=c \end{cases}

Let P ( x ) = x 3 2 x 2 + p x q P(x) = x^3-2x^2 +px-q be a polynomial with roots a a , b b and c c satisfying the system of equations above.

Find the sum of all possible values of p + q p+q .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rohit Ner
May 30, 2016

a + b + c = a 2 + b 2 = ( a + b ) 2 2 a b ( a + b ) 2 ( a + b ) = 2 a b + c ( a + b ) ( a + b 1 ) = 3 c ( c 2 ) ( c 1 ) = 3 c a + b + c = 2 c 2 6 c + 2 = 0 c = 6 p = a b + b c + c a = a b + c ( a + b ) = c + c ( 2 c ) = 3 c c 2 = 3 c q q = a b c , a b = c p + q = 3 c p + q = 3 c = 18 \begin{aligned} a+b+c&={a}^2+{b}^2\\&={\left(a+b\right)}^2-2ab\\{\left(a+b\right)}^2-(a+b)&=2ab+c\\(a+b)(a+b-1)&=3c\\(c-2)(c-1)&=3c\because a+b+c=2\\{c}^2-6c+2&=0\\\Rightarrow \sum { c } &=6\\p&=ab+bc+ca\\&=ab+c(a+b)\\&=c+c(2-c)\\&=3c-{c}^2\\&=3c-q \because q=abc, ab=c\\p+q&=3c\\\sum{p+q}&=3\sum{c}\\&\huge\color{#3D99F6}{=\boxed{18}}\end{aligned}

Nice solution +1 !!. Did the same way !

Rishabh Tiwari - 5 years ago
Chew-Seong Cheong
May 30, 2016

By Vieta's formula, we have:

{ a + b + c = 2 . . . ( 1 ) a b + b c + c a = p . . . ( 2 ) a b c = q . . . ( 3 ) \begin{cases} a+b+c = 2 & ...(1) \\ ab+bc+ca = p & ...(2) \\ abc = q &...(3) \end{cases}

It is given that:

{ a + b + c = a 2 + b 2 . . . ( 4 ) a b = c . . . ( 5 ) \begin{cases} a+b+c = a^2 + b^2 & ...(4) \\ ab = c & ...(5) \end{cases}

Therefore, we have:

( 4 ) : a + b + c = a 2 + b 2 ( 1 ) : a + b + c = 2 a 2 + b 2 = 2 . . . ( 4 a ) \begin{aligned} (4): \quad \color{#3D99F6}{a+b+c} & = a^2 + b^2 \quad \quad \small \color{#3D99F6}{(1): \ \ a+b+c = 2} \\ \implies a^2 + b^2 & = \color{#3D99F6}{2} \quad ...(4a) \end{aligned}

( 5 ) : a b = c a b c = c 2 ( 3 ) : a b c = q c 2 = q . . . ( 5 a ) \begin{aligned} (5): \quad ab & = c \\ \implies \color{#3D99F6}{abc} & = c^2 \quad \quad \small \color{#3D99F6}{(3): \ \ abc = q} \\ c^2 & = \color{#3D99F6}{q} \quad ...(5a) \end{aligned}

( 2 ) : a b + b c + c a = p ( 5 ) : a b = c c + c ( a + b ) = p ( 1 ) : a + b + c = 2 c + c ( 2 c ) = p c + 2 c c 2 = p ( 5 a ) : c 2 = q 3 c q = p p + q = 3 c . . . ( 2 a ) \begin{aligned} (2): \quad \color{#3D99F6}{ab}+bc+ca & = p \quad \quad \small \color{#3D99F6}{(5): \ \ ab = c} \\ \color{#3D99F6}{c}+c(\color{#D61F06}{a+b}) & = p \quad \quad \small \color{#D61F06}{(1): \ \ a+b+c = 2} \\ c+c(\color{#D61F06}{2-c}) & = p \\ c + 2c - \color{#3D99F6}{c^2} & = p \quad \quad \small \color{#3D99F6}{(5a): \ \ c^2 = q} \\ 3c - \color{#3D99F6}{q} & = p \\ \implies p + q & = 3c \quad ...(2a) \end{aligned}

Now,

( a + b + c ( 1 ) ) 2 = a 2 + b 2 ( 4 a ) + c 2 + 2 ( a b + b c + c a ( 2 ) ) 4 = 2 + c 2 + 2 p ( 2 a ) : p + q = 3 c p = 3 c q 2 = c 2 + 2 ( 3 c q ) ( 5 a ) : c 2 = q 2 = c 2 + 6 c 2 c 2 c 2 6 c + 2 = 0 c = { c 1 = 3 + 7 c 2 = 3 7 \begin{aligned} (\underbrace{a+b+c}_{(1)})^2 & = \underbrace{a^2+b^2}_{(4a)} + c^2 + 2(\underbrace{ab+bc+ca}_{(2)}) \\ 4 & = 2 + c^2 +2\color{#3D99F6}{p} \quad \quad \small \color{#3D99F6}{(2a): \ \ p+q = 3c \implies p = 3c - q} \\ 2 & = c^2 +2(\color{#3D99F6}{3c-q}) \quad \quad \small \color{#3D99F6}{(5a): \ \ c^2=q} \\ 2 & = c^2 +6c - 2c^2 \\ \implies c^2 - 6c +2 & = 0 \\ c & = \begin{cases} c_1 = 3 + \sqrt{7} \\ c_2 = 3 - \sqrt{7} \end{cases} \end{aligned}

Therefore, the sum all possible p + q = 3 c . . . ( 2 a ) p+q = 3c \quad ...(2a) :

( p 1 + q 1 ) + ( p 2 + q 2 ) = 3 c 1 + 3 c 2 = 3 ( 3 + 7 ) + 3 ( 3 7 ) = 18 \begin{aligned} (p_1+q_1) + (p_2+q_2) & = 3c_1 + 3c_2 \\ & = 3(3 + \sqrt{7}) + 3(3 - \sqrt{7}) \\ & = \boxed{18} \end{aligned}

Cool solution sir !+1!

Rishabh Tiwari - 5 years ago

@Chew-Seong Cheong Sir, can you please tell me what are the corresponding values of a and b for the given c........Because they both must be real and one of them should be the conjugate of c.........But then, the conditions are not satisfied.......!!!!

Aaghaz Mahajan - 2 years, 12 months ago

Log in to reply

Please note that a a , b b and c c may not be real roots.

Chew-Seong Cheong - 2 years, 12 months ago

Log in to reply

Oh I see.......Thanks a lot sir!!!

Aaghaz Mahajan - 2 years, 12 months ago

From Vieta's formulas we know that a + b + c = 2 a+b+c=2 then a + b = 2 c a+b=2-c , a b c = q abc=q and a b + b c + a c = p ab+bc+ac=p , thus, from the given equations, we have that q = c 2 q=-c^2 and p = c + b c + a c = c ( 1 + a + b ) = c ( 3 c ) = 3 c c 2 p=c+bc+ac=c(1+a+b)=c(3-c)=3c-c^2 , therefore, the sum of all possibles values of p + q p+q is c 2 + 3 c c 2 = 3 c c^2+3c-c^2=3c , that is, three times the sum of all possible values for c c .

Now, as a + b = 2 c a+b=2-c and a b = c ab=c , then a + b = 2 a b a+b=2-ab , which is the same that 2 ( a + b ) = 4 2 a b 2(a+b)=4-2ab . Also, a 2 + b 2 = 2 a^2+b^2=2 , thus, ( a + b ) 2 = 2 + 2 a b (a+b)^2=2+2ab . Adding both equations, ( a + b ) 2 + 2 ( a + b ) = 6 (a+b)^2+2(a+b)=6 , and solving for a + b a+b , we conclude that ( a + b ) = 1 ± 7 (a+b)=-1\pm \sqrt { 7 } , hence, c = 2 ( a + b ) = 2 + 1 ± 7 = 3 ± 7 c=2-(a+b)=2+1\pm \sqrt { 7 }=3\pm \sqrt { 7 } , so the sum of all possible values for c c is 6 6 , then, the asked value is 3 6 = 18 3\cdot 6=18 .

Let us find value of p + q p+q . p + q = a b ( 1 + a + b + a b ) p+q = ab(1+a+b+ab) .

By V i e t e s T h e o r a m Viete's Theoram

a + b + c = 2 = a + b + a b a+b+c=2=a+b+ab .

Therefore sum of all values of p+q are

3 a b 3\sum ab .

Now

a + b = 2 a b a+b=2-ab ......… …1

And

a 2 + b 2 = 2 a^{2}+b^{2} =2 .

Forming a quadratic in a b ab by squaring 1, we calculate sum of roots as 6, ie

a b \sum ab = 6.

Thus answer is 18.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...