Extraordinary Differential Equations #3

Calculus Level 5

y y is a positive function on x x such that y + y ( k x + m + cos ( n x ) ) = k x + m + cos ( n x ) y y'+y(kx+m+\cos{(nx)})=\frac{kx+m+\cos{(nx)}}{y} where k k , m m are positive real-valued constants to be determined, and n n is an arbitrary positive integer.

You are given that y ( 0 ) = y ( 2 π ) = 2 y(0)=y(-2\pi)=\sqrt{2} and y ( π ) = e + 1 y(-\pi)=\sqrt{e+1} .

What is the value of y ( ϕ π ) y(\phi\pi) where ϕ \phi is a positive integer?

(Think about this: There are four unknowns and only three specifications (initial conditions). But does that mean the problem is not solvable?)

A: e ϕ + ϕ cos ϕ π \sqrt{e^{-\phi}+\phi\cos{\phi\pi}}

B: e ϕ + cos ϕ π \sqrt{e^{-\phi}+\cos{\phi\pi}}

C: e ϕ ( ϕ + 2 ) ϕ \sqrt{e^{-\phi(\phi+2)}-\phi}

D: e ϕ ( ϕ + 2 ) + 1 \sqrt{e^{-\phi(\phi+2)}+1}

E: e ϕ ϕ \sqrt{e^{-\phi}-\phi}

F: e ϕ + 1 \sqrt{e^{-\phi}+1}

G: ϕ ( e + 1 ) \sqrt{-\phi(e+1)}

H: ϕ e + cos ϕ π \sqrt{-\phi e+\cos{\phi\pi}}

(This problem is part of the set Extraordinary Differential Equations .)

F A B G E C D H

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 27, 2017

Let f ( x ) = k x + m + cos ( n x ) f(x) = kx + m + \cos (nx) . Therefore, we have:

y + y f ( x ) = f ( x ) y d y d x = ( 1 y y ) f ( x ) y 1 y 2 d y = f ( x ) d x 1 2 ln ( 1 y 2 ) = k x 2 2 + m x + n sin ( n x ) + C C is the constant of integration. ln ( 1 y 2 ) = k x 2 + 2 m x + 2 n sin ( n x ) + C Given that y ( 0 ) = 2 ln ( y 2 1 ) = k x 2 + 2 m x + 2 n sin ( n x ) + C 0 = C Given that y ( 2 π ) = 2 0 = 4 k π 2 4 m π m = k π Given that y ( π ) = e + 1 ln ( e + 1 1 ) = k π 2 2 k π 2 1 = k π 2 k = 1 π 2 ln ( y 2 1 ) = x 2 π 2 + 2 x π + 2 n sin ( n x ) Putting x = ϕ π ln ( y ( ϕ π ) 2 1 ) = ϕ 2 + 2 ϕ y ( ϕ π ) 2 1 = e ϕ ( ϕ + 2 ) y ( ϕ π ) = e ϕ ( ϕ + 2 ) + 1 Note that y > 0 \begin{aligned} y' + y f(x) & = \frac {f(x)}y \\ \frac {dy}{dx} & = \left(\frac 1y - y \right)f(x) \\ \int \frac {y}{1-y^2} dy & = \int f(x) dx \\ - \frac 12 \ln (|1-y^2|) & = \frac {kx^2}2 + mx + n \sin (nx) + \color{#3D99F6} C & \small \color{#3D99F6} C \text{ is the constant of integration.} \\ - \ln (|1-y^2|) & = kx^2 + 2mx + 2n \sin (nx) + C & \small \color{#3D99F6} \text{Given that }y(0) = \sqrt 2 \\ - \ln (y^2-1) & = kx^2 + 2mx + 2n \sin (nx) + C \\ \implies 0 & = C & \small \color{#3D99F6} \text{Given that }y(-2 \pi) = \sqrt 2 \\ 0 & = 4k \pi^2 - 4m \pi \\ \implies m & = k \pi & \small \color{#3D99F6} \text{Given that }y(-\pi) = \sqrt {e+1} \\ - \ln (e+1-1) & = k\pi^2 - 2k\pi^2 \\ - 1& = - k\pi^2 \\ \implies k & = \frac 1{\pi^2} \\ - \ln (y^2-1) & = \frac {x^2}{\pi^2} + \frac {2x}\pi + 2n \sin (nx) & \small \color{#3D99F6} \text{Putting } x=\phi \pi \\ - \ln (y(\phi \pi)^2-1) & = \phi^2 + 2\phi \\ y(\phi \pi)^2-1 & = e^{-\phi (\phi + 2)} \\ y(\phi \pi) & = \sqrt{e^{-\phi (\phi + 2)}+1} & \small \color{#3D99F6} \text{Note that }y > 0 \end{aligned}

Therefore, the answer is D \boxed{D} .

Very nicely written! (How did you do the right column blue LaTeX? I didn't know that was possible haha) =D

Wee Xian Bin - 4 years, 4 months ago

Log in to reply

You can click on the pull-down menu ( \cdots ) at the right-hand bottom corner of the problem, then select Toggle LaTex to see the LaTex codes.

Chew-Seong Cheong - 4 years, 4 months ago

Log in to reply

Oh I see great thanks! :)

Wee Xian Bin - 4 years, 4 months ago

Sir there is a typo in the last line :)

Sumanth R Hegde - 4 years, 4 months ago

Log in to reply

Thanks. I have corrected it.

Chew-Seong Cheong - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...