Extraordinary Differential Equations #4

Calculus Level 4

Given that y = y ( x ) y=y(x) , solve 2017 y x y 2017 ln y x 2 e sin x cos x = 0 2017\frac{y'}{xy}-2017\frac{\ln{y}}{x^2}-e^{\sin{x}}\cos{x}=0

A: y = e c x + e sin x 2017 y=e^{\frac{c}{x}+\frac{e^{\sin{x}}}{2017}}
B: y = e c x + x e sin x 2017 y=e^{cx+\frac{xe^{\sin{x}}}{2017}}
C: y = e c x + x e sin x 2017 y=e^{\frac{c}{x}+\frac{xe^{\sin{x}}}{2017}}
D: y = e c x + e sin x 2017 x y=e^{cx+\frac{e^{\sin{x}}}{2017x}}
E: None of the above.

Clarification: c c denotes the arbitrary constant of integration .

(This problem is part of the set Extraordinary Differential Equations .)

D B A C E

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Wee Xian Bin
Jan 28, 2017

Relevant wiki: First Order Differential Equations - Problem Solving

Because all terms in the ODE are a combination of functions on both x x and y ( x ) y(x) let's proceed to check if the ODE is in exact form. To do so, convert the ODE into the form p ( x , y ) + q ( x , y ) y = 0 p(x,y)+q(x,y)y'=0 where p ( x , y ) = F x p(x,y)=\frac{\partial F}{\partial x} and q ( x , y ) = F y q(x,y)=\frac{\partial F}{\partial y} for some function F = F ( x , y ) F=F(x,y) . We test if a such function F F exists by checking if p y = p x \frac{\partial p}{\partial y}=\frac{\partial p}{\partial x} .

With some work we can determine that in fact y ( 2017 ln y x 2 e sin x cos x ) = x 2017 x y = 2017 x 2 y \frac{\partial}{\partial y} (-\frac{2017\ln{y}}{x^2}-e^{\sin{x}}\cos{x})=\frac{\partial}{\partial x} \frac{2017}{xy}=-\frac{2017}{x^2 y} . Then we get F x + F y d y d x \frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{dy}{dx} =0 which implies that the general solution to this is in the form F ( x , y ) = c F(x,y)=c where c c is the arbitrary constant of integration. To obtain F ( x , y ) F(x,y) we integrate both p ( x , y ) p(x,y) and q ( x , y ) q(x,y) in terms of x x and y y respectively:

F ( x , y ) = p ( x , y ) d x + k ( y ) = 2017 ln y x e sin x + k ( y ) F(x,y)=\int p(x,y) dx + k(y)=\frac{2017\ln{y}}{x}-e^{\sin{x}}+k(y)

F ( x , y ) = q ( x , y ) d y + h ( x ) = 2017 ln y x + h ( x ) F(x,y)=\int q(x,y) dy + h(x)=\frac{2017\ln{y}}{x}+h(x)

By comparison of terms, h ( x ) = e sin x h(x)=-e^{\sin{x}} and k ( y ) = 0 k(y)=0 . We thus get:

F ( x , y ) = 2017 ln y x e sin x = c F(x,y)=\frac{2017\ln{y}}{x}-e^{\sin{x}}=c' ln y = c x 2017 + x e sin x 2017 \ln{y}=\frac{c'x}{2017}+\frac{xe^{\sin{x}}}{2017} y = e c x + x e sin x 2017 y=e^{cx+\frac{xe^{\sin{x}}}{2017}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...