( x + y + z ) 4 x 4 + y 4 + z 4
Let the minimum and maximum values of the above expression be α and β , respectively, satisfying the following conditions:
Suppose α can be represented as D A − B C , and β as F E , for positive integers A , B , C , D , E , F and with C having no square factors.
Then find the minimum value of A + B + C + D + E + F .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This is fantastic.
( x + y + z ) 4 x 4 + y 4 + z 4 is homogeneous.
minimum or maximum values always occur when x = y = z .
but x = y = z does not satisfy ( x + y + z ) 3 = 3 2 x y z .
So minimum or maximum values occur when x = y or y = z or z = x .
Let y = z = 1 ,
( x + 2 ) 3 = 3 2 x .
x = 2 , x = 2 5 − 4 , x = − 2 5 − 4 < 0
x = 2 , y = z = 1
( x + y + z ) 4 x 4 + y 4 + z 4 = 1 2 8 9
x = 2 5 − 4 , y = z = 1
( x + y + z ) 4 x 4 + y 4 + z 4 = 2 5 6 3 8 3 − 1 6 5 5
2 5 6 3 8 3 − 1 6 5 5 < 1 2 8 9
maximum value = 1 2 8 9
minimum value = 2 5 6 3 8 3 − 1 6 5 5
The minimum value of A + B + C + D + E + F = 3 8 3 + 1 6 5 + 5 + 2 5 6 + 9 + 1 2 8 = 9 4 6
Why is the second and fourth line always true ?
Problem Loading...
Note Loading...
Set Loading...
Let P ( x , y , z ) = ( x + y + z ) 4 x 4 + y 4 + z 4 .
Note that P ( x , y , z ) is homogeneous, that is P ( t x , t y , t z ) = P ( x , y , z ) , ∀ t > 0 .
Also note that if ( x , y , z ) satisfy conditions of the problem, then so does ( t x , t y , t z ) , t > 0 .
Therefore, without loss of generality, we can assume that x + y + z = 4 and hence x y z = 2 .
So the problem can restated as follows: Find the maximum and minimum values of P = 2 5 6 1 ( x 4 + y 4 + z 4 ) if x , y , z > 0 satisfying x + y + z = 4 and x y z = 2 .
Put A = x 4 + y 4 + z 4 , B = x y + y z + z x , we have:
A = ( x 2 + y 2 + z 2 ) 2 − 2 ( x 2 y 2 + y 2 z 2 + z 2 x 2 )
= ( ( x + y + z ) 2 − 2 ( x y + y z + z x ) ) 2 − 2 [ ( x y + y z + z x ) 2 − 2 x y z ( x + y + z ) ]
= 2 ( B 2 − 3 2 B + 1 4 4 )
By the condition x + y + z = 4 and x y z = 2 , the inequality ( y + z ) 2 ≥ 4 y z is equivalent to ( 4 − x ) 2 ≥ x 8 ⇔ 3 − 5 ≤ x ≤ 4 (as 0 ≤ x ≤ 4 ) .
By symmetry, we also have 3 − 5 ≤ y , z ≤ 2 .
Then we have:
( x − 2 ) ( y − 2 ) ( z − 2 ) ≤ 0 ⇔ 5 ≤ B .
( x − ( 3 − 5 ) ) ( y − ( 3 − 5 ) ) ( z − ( 3 − 5 ) ) ≥ 0 ⇔ B ≤ 2 5 5 − 1 .
Since A = f ( B ) = 2 ( B 2 − 3 2 B + 1 4 4 ) , as a quadratic function of B , is decreasing on ( 0 , 1 6 ) ⊃ [ 5 ; 2 5 5 − 1 ] , we obtain
min A = f ( 2 5 5 − 1 ) = 3 8 3 − 1 6 5 5 ; max A = f ( 5 ) = 1 8 .
Thus,
min P = 2 5 6 3 8 3 − 1 6 5 5 , occurs at say x = 3 − 5 , y = z = 2 1 + 5
max P = 1 2 8 9 , occurs at say x = 2 ; y = z = 1
So, the minimum value of A + B + C + D + E + F is 3 8 3 + 1 6 5 + 5 + 2 5 6 + 9 + 1 2 8 = 9 4 6 .