Extremas of a Constrained Inequality!

Algebra Level 5

x 4 + y 4 + z 4 ( x + y + z ) 4 \large{ \dfrac{x^4 + y^4 + z^4}{(x+y+z)^4} }

Let the minimum and maximum values of the above expression be α {\alpha} and β , {\beta}, respectively, satisfying the following conditions:

  • x , y , z R + x,y,z \in \mathbb R^+
  • ( x + y + z ) 3 = 32 x y z . (x+y+z)^3 = 32xyz.

Suppose α {\alpha} can be represented as A B C D , \dfrac{A - B \sqrt{C}}{D}, and β {\beta} as E F , \dfrac{E}{F}, for positive integers A , B , C , D , E , F A,B,C,D,E,F and with C C having no square factors.

Then find the minimum value of A + B + C + D + E + F A+B+C+D+E+F .


The answer is 946.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let P ( x , y , z ) = x 4 + y 4 + z 4 ( x + y + z ) 4 P(x,y,z)=\dfrac{x^4+y^4+z^4}{(x+y+z)^4} .

Note that P ( x , y , z ) P(x, y, z) is homogeneous, that is P ( t x , t y , t z ) = P ( x , y , z ) , t > 0 P(tx, ty, tz)=P(x,y,z),\forall t>0 .

Also note that if ( x , y , z ) (x, y, z) satisfy conditions of the problem, then so does ( t x , t y , t z ) , t > 0 (tx, ty, tz),\;t>0 .

Therefore, without loss of generality, we can assume that x + y + z = 4 x+y+z=4 and hence x y z = 2 xyz=2 .

So the problem can restated as follows: Find the maximum and minimum values of P = 1 256 ( x 4 + y 4 + z 4 ) P=\dfrac{1}{256}(x^4+y^4+z^4) if x , y , z > 0 x, y, z>0 satisfying x + y + z = 4 x+y+z=4 and x y z = 2 xyz=2 .

Put A = x 4 + y 4 + z 4 , B = x y + y z + z x A=x^4+y^4+z^4, B=xy+yz+zx , we have:

A = ( x 2 + y 2 + z 2 ) 2 2 ( x 2 y 2 + y 2 z 2 + z 2 x 2 ) A=(x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)

= ( ( x + y + z ) 2 2 ( x y + y z + z x ) ) 2 2 [ ( x y + y z + z x ) 2 2 x y z ( x + y + z ) ] \quad=((x+y+z)^2-2(xy+yz+zx))^2-2[(xy+yz+zx)^2-2xyz(x+y+z)]

= 2 ( B 2 32 B + 144 ) \quad=2(B^2-32B+144)

By the condition x + y + z = 4 x+y+z=4 and x y z = 2 xyz=2 , the inequality ( y + z ) 2 4 y z (y+z)^2\ge4yz is equivalent to ( 4 x ) 2 8 x 3 5 x 4 (4-x)^2\ge\dfrac{8}{x} \Leftrightarrow 3-\sqrt5\le x\le 4\quad (as 0 x 4 ) 0\le x\le 4) .

By symmetry, we also have 3 5 y , z 2 3-\sqrt5\le y,z\le 2 .

Then we have:

( x 2 ) ( y 2 ) ( z 2 ) 0 5 B (x-2)(y-2)(z-2)\le 0 \Leftrightarrow 5\le B .

( x ( 3 5 ) ) ( y ( 3 5 ) ) ( z ( 3 5 ) ) 0 B 5 5 1 2 (x-(3-\sqrt5))(y-(3-\sqrt5))(z-(3-\sqrt5))\ge 0 \Leftrightarrow B\le \dfrac{5\sqrt5-1}{2} .

Since A = f ( B ) = 2 ( B 2 32 B + 144 ) A=f(B)=2(B^2-32B+144) , as a quadratic function of B B , is decreasing on ( 0 , 16 ) [ 5 ; 5 5 1 2 ] (0, 16)\supset \left[5; \dfrac{5\sqrt5-1}{2}\right] , we obtain

min A = f ( 5 5 1 2 ) = 383 165 5 ; max A = f ( 5 ) = 18 \min A=f\left(\dfrac{5\sqrt5-1}{2}\right)=383-165\sqrt5; \max A=f(5)=18 .

Thus,

min P = 383 165 5 256 \min P=\dfrac{383-165\sqrt5}{256} , occurs at say x = 3 5 , y = z = 1 + 5 2 x=3-\sqrt5, y=z=\dfrac{1+\sqrt5}{2}

max P = 9 128 \max P=\dfrac{9}{128} , occurs at say x = 2 ; y = z = 1 x=2; y=z=1

So, the minimum value of A + B + C + D + E + F A+B+C+D+E+F is 383 + 165 + 5 + 256 + 9 + 128 = 946 383+165+5+256+9+128=\boxed{946} .

This is fantastic.

Satyajit Mohanty - 5 years, 10 months ago
汶良 林
Aug 11, 2015

x 4 + y 4 + z 4 ( x + y + z ) 4 \frac{x^{4} + y^{4} + z^{4}}{(x + y + z)^{4}} is homogeneous.

minimum or maximum values always occur when x = y = z x = y = z .

but x = y = z x = y = z does not satisfy ( x + y + z ) 3 = 32 x y z (x + y + z)^{3} = 32xyz .

So minimum or maximum values occur when x = y x = y or y = z y = z or z = x z = x .

Let y = z = 1 y = z = 1 ,

( x + 2 ) 3 = 32 x (x + 2)^{3} = 32x .

x = 2 , x = 2 5 4 , x = 2 5 4 < 0 x = 2, x = 2\sqrt{5} - 4, x = -2\sqrt{5} - 4 < 0

x = 2 , y = z = 1 x = 2, y = z = 1

x 4 + y 4 + z 4 ( x + y + z ) 4 = 9 128 \frac{x^{4} + y^{4} + z^{4}}{(x + y + z)^{4}} = \frac{9}{128}

x = 2 5 4 , y = z = 1 x = 2\sqrt{5} - 4, y = z = 1

x 4 + y 4 + z 4 ( x + y + z ) 4 = 383 165 5 256 \frac{x^{4} + y^{4} + z^{4}}{(x + y + z)^{4}} = \frac{383 - 165\sqrt{5}}{256}

383 165 5 256 < 9 128 \frac{383 - 165\sqrt{5}}{256} < \frac{9}{128}

maximum value = 9 128 \frac{9}{128}

minimum value = 383 165 5 256 \frac{383 - 165\sqrt{5}}{256}

The minimum value of A + B + C + D + E + F = 383 + 165 + 5 + 256 + 9 + 128 = 946 A + B + C + D + E + F = 383 + 165 + 5 + 256 + 9 + 128 = \boxed{946}

Why is the second and fourth line always true ?

Dexter Woo Teng Koon - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...