Extremas of a Function!

Calculus Level 5

f ( cot ( x ) ) = sin ( 2 x ) + cos ( 2 x ) \large{f(\cot(x)) = \sin(2x) + \cos(2x)}

Let f f be a function defined on the set of real numbers R \mathbb R , taking the values in R \mathbb R , and satisfying the above condition for x ( 0 , π ) \forall \ x \in (0,\pi) .

If the sum of the least and greatest values of the function g ( x ) = f ( x ) f ( 1 x ) g(x) = f(x) \cdot f(1-x) on the closed interval [ 1 , 1 ] [-1,1] can be expressed as:

A B C \large{\dfrac{A}{B} - \sqrt{C}}

such that A , B , C Z + ; gcd ( A , B ) = 1 A,B,C \in \mathbb Z^+\ ; \ \gcd(A,B)=1 and C C has no perfect n t h n^{th} power factor, n Z + , n 2 n \in \mathbb Z^+, n \geq 2 . Submit the value of A + B + C A+B+C as your answer.


The answer is 160.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 3, 2016

Since sin 2 x = 2 tan x 1 + tan 2 x = 2 cot x cot 2 x + 1 cos 2 x = ; 1 tan 2 x 1 + tan 2 x = cot 2 x 1 cot 2 x + 1 \sin2x \; =\; \frac{2\tan x}{1 + \tan^2x} \; = \; \frac{2\cot x}{\cot^2x + 1} \qquad \qquad \cos2x \; =\ ; \frac{1 - \tan^2x }{1 + \tan^2x} \; = \; \frac{\cot^2x - 1}{\cot^2x + 1} we see that f ( u ) = u 2 + 2 u 1 u 2 + 1 f(u) \; = \; \frac{u^2 + 2u - 1}{u^2+1} so that g ( u ) = ( u 2 + 2 u 1 ) ( u 2 4 u + 2 ) ( u 2 + 1 ) ( u 2 2 u + 2 ) g(u) \; = \; \frac{(u^2+2u-1)(u^2 - 4u + 2)}{(u^2+1)(u^2-2u+2)} and hence g ( u ) = 2 ( 2 u 1 ) ( 5 u 4 10 u 3 + 9 u 2 4 u 6 ) ( u 2 + 1 ) 2 ( u 2 2 u + 1 ) 2 g'(u) \; =\; \frac{2(2u-1)(5u^4 - 10u^3 + 9u^2 - 4u - 6)}{(u^2+1)^2(u^2-2u+1)^2} The numerator of g ( u ) g'(u) factorizes as 2 ( 2 u 1 ) ( 5 u 4 10 u 3 + 9 u 2 4 u 6 ) = 2 5 ( 2 u 1 ) ( 5 u 2 5 u + 2 + 34 ) ( 5 u 2 5 u + 2 34 ) 2(2u-1)(5u^4 - 10u^3 + 9u^2 - 4u - 6) \; = \; \tfrac25(2u-1)(5u^2 - 5u + 2 + \sqrt{34})(5u^2 - 5u + 2 - \sqrt{34}) and so the turning points of g ( u ) g(u) in the interval [ 1 , 1 ] [-1,1] occur at u = 1 2 u = 1 2 ( 1 1 5 ( 4 34 3 ) ) . u \; =\; \tfrac12 \qquad \qquad u \; = \; \tfrac12 \left(1 - \sqrt{\tfrac15 (4 \sqrt{34} - 3)}\right) \;. The maximum value of g ( u ) g(u) in the interval [ 1 , 1 ] [-1,1] is g ( 1 2 ) = 1 25 , g(\tfrac12) \; = \; \tfrac{1}{25} \;, while the maximum value of g ( u ) g(u) in this interval is g ( 1 2 ( 1 1 5 ( 4 34 3 ) ) ) = 4 34 . g\left(\tfrac12 \left(1 - \sqrt{\tfrac15 (4 \sqrt{34} - 3)}\right)\right) \; = \; 4 - \sqrt{34} \;. and so the sum of the maximum and minimum values of g ( u ) g(u) over the interval [ 1 , 1 ] [-1,1] is 1 25 + ( 4 34 ) = 101 25 34 \tfrac{1}{25} + \big(4 - \sqrt{34}\big) \; = \; \tfrac{101}{25} - \sqrt{34} leading to the answer 101 + 25 + 34 = 160 101 + 25 + 34 \,=\, 160 .

Actually, you need to verify that the values of function at boundary are not minima/maxima. However, that's not the case.

Perathorn Pooksombat - 5 years, 5 months ago

Log in to reply

The real roots of g g' are simple, so tracking the sign changes of g g' is elementary.

Mark Hennings - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...