Extreme logarithms problem

Algebra Level 4

Given that log 9 x = log 12 y = log 16 ( x + y ) \log_9 x=\log_{12} y=\log_{16} (x+y) , find y x \dfrac yx .


The answer is 1.61803398875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zico Quintina
Jun 24, 2018

Let log 9 x = log 12 y = log 16 ( x + y ) = α \log_9 x = \log_{12} y = \log_{16} (x + y) = \alpha . Then x = 9 α , y = 1 2 α x = 9^{\alpha}, y = 12^{\alpha} and x + y = 1 6 α x + y = 16^{\alpha} .

x = 9 α x = 3 α x + y = 1 6 α x + y = 4 α \begin{array}{rll} x = \ 9^{\alpha} &\implies &\qquad \sqrt{x} = \ 3^{\alpha} \\ \ x + y = \ 16^{\alpha} &\implies &\ \ \sqrt{x + y} = \ 4^{\alpha} \end{array} y x = 1 2 α 9 α = 4 α 3 α = x + y x y 2 x 2 = x + y x x y 2 x 2 y x 3 = 0 [We can divide by x 3 since x 0 ] y 2 x 2 y x 1 = 0 y x = 1 ± ( - 1 ) 2 4 ( 1 ) ( - 1 ) 2 ( 1 ) [We can discard the negative solution as y x > 0 ] = 1 + 5 2 = ϕ 1.61803398875 \begin{array}{rll} \dfrac{y}{x} = \dfrac{12^{\alpha}}{9^{\alpha}} &= \ \dfrac{4^{\alpha}}{3^{\alpha}} = \dfrac{\sqrt{x + y}}{\sqrt{x}} \\ \\ \dfrac{y^2}{x^2} &= \ \dfrac{x + y}{x} \\ \\ xy^2 - x^2y - x^3 &= \ 0 &\small \text{[We can divide by } x^3 \text{ since }x \ne 0] \\ \\ \dfrac{y^2}{x^2} - \dfrac{y}{x} - 1 &= \ 0 \\ \\ \dfrac{y}{x} &= \ \dfrac{1 \pm \sqrt{(\text{-}1)^2 - 4(1)(\text{-}1)}}{2(1)} &\small \text{[We can discard the negative solution as } \frac{y}{x} > 0] \\ \\ &= \ \dfrac{1 + \sqrt{5}}{2} \\ \\ &= \ \phi \approx \boxed{1.61803398875} \end{array}

Sanjeet Raria
Aug 21, 2018

Let all these equal to k k . Then, 9 k = x , 1 2 k = y , 1 6 k = ( x + y ) 9^k=x,\space12^k=y,\space16^k=(x+y) \space As, 16 × 9 = 1 2 2 16×9=12^2 , x ( x + y ) = y 2 \implies\space x(x+y)=y^2 Dividing throughout x 2 x^2 , y 2 x 2 y x 1 = 0 \frac {{y}^2}{ {x}^2}- \frac y x-1=0 y x = 1 + 5 2 = 1.618 \implies \frac y x= \frac{1+\sqrt5}{2}=\boxed{1.618}

Chew-Seong Cheong
Jun 25, 2018

log 9 x = log 12 y = log 16 ( x + y ) Convert to same logarithm base. log x log 9 = log y log 12 = log ( x + y ) log 16 \begin{aligned} \log_9 x & = \log_{12} y = \log_{16} (x+y) & \small \color{#3D99F6} \text{Convert to same logarithm base.} \\ \frac {\log x}{\log 9} & = \frac {\log y}{\log 12} = \frac {\log (x+y)}{\log 16} \end{aligned}

{ log y log x = log 12 log 9 = log 3 + log 4 2 log 3 = 1 2 + log 4 log 9 . . . ( 1 ) log ( x + y ) log x = log 16 log 9 = 2 log 4 log 9 . . . ( 2 ) \implies \begin{cases} \dfrac {\log y}{\log x} = \dfrac {\log 12}{\log 9} = \dfrac {\log 3 + \log 4}{2 \log 3} = \dfrac 12 + \color{#D61F06}\dfrac {\log 4}{\log 9} & ... (1) \\ \dfrac {\log (x+y)}{\log x} = \dfrac {\log 16}{\log 9} = 2\cdot \color{#D61F06}\dfrac {\log 4}{\log 9} & ...(2) \end{cases}

( 1 ) : log y log x = 1 2 + log ( x + y ) 2 log x Multiply both sides by 2 log x . 2 log y = log x + log ( x + y ) log y 2 = log ( x ( x + y ) ) y 2 = x ( x + y ) Divide both sides by x y . y x = x y + 1 Multiply both sides by y x and rearrange. \begin{aligned} (1): \quad \frac {\log y}{\log x} & = \frac 12 + \color{#D61F06} \frac {\log (x+y)}{2 \log x} & \small \color{#3D99F6} \text{Multiply both sides by }2 \log x. \\ 2 \log y & = \log x + \log(x+y) \\ \log y^2 & = \log (x(x+y)) \\ y^2 & = x(x+y) & \small \color{#3D99F6} \text{Divide both sides by }xy. \\ \frac yx & = \frac xy + 1 & \small \color{#3D99F6} \text{Multiply both sides by }\frac yx \text{ and rearrange.} \end{aligned}

( y x ) 2 y x 1 = 0 Solve the quadratic for y x . y x = 1 + 5 2 Note that y x > 0 1.618 \begin{aligned} \left(\frac yx\right)^2 - \frac yx - 1 & = 0 & \small \color{#3D99F6} \text{Solve the quadratic for } \frac yx. \\ \implies \frac yx & = \frac {1+\sqrt 5}2 & \small \color{#3D99F6} \text{Note that }\frac yx > 0 \\ & \approx \boxed{1.618} \end{aligned}

Do you have to show that both x and y are positive? If x and y were both negative, their quotient would be positive, but the original equation would not be satisfied. Solving for x/y in this manner seems to ignore the constraints on the variables.

JD Money - 2 years, 11 months ago

Log in to reply

I think it should be specified in the problem.

Chew-Seong Cheong - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...