Extreme minimization

Algebra Level 5

Let a a , b b , and c c be real numbers and m m be the minimum value of the expression

( a b b c ) 4 + ( b c c a ) 4 + ( c a a b ) 4 \left(\frac {a - b}{b - c}\right)^4 + \left(\frac {b - c}{c - a}\right)^4 + \left(\frac {c - a}{a - b}\right)^4

If m m is a root of the equation x 3 7 x 2 + 3 x + p = 0 x^3 - 7x^2 + 3x + p= 0 , find the value of p p .


The answer is -898.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 20, 2020

We are asked to minimize ( x y ) 4 + ( y x + y ) 4 + ( x + y x ) 4 \left(\frac{x}{y}\right)^4 + \left(\frac{y}{x+y}\right)^4 + \left(\frac{x+y}{x}\right)^4 over all x , y > 0 x,y > 0 . This expression is homogeneous in x x and y y , so this is equvalent to asking to minimize (putting x = 1 x=1 ): A ( y ) = y 4 + ( y 1 + y ) 4 + ( 1 + y ) 4 A(y) \; = \; y^{-4} + \left(\frac{y}{1+y}\right)^4 + (1+y)^4 Now A ( y ) = 4 ( 1 + y + y 2 ) 2 B ( y ) y 5 ( 1 + y ) 5 A'(y) \; =\; \frac{4(1+y+y^2)^2B(y)}{y^5(1+y)^5} where B ( y ) = y 9 + 6 y 8 + 13 y 7 + 10 y 6 2 y 5 y 4 + 3 y 3 y 2 3 y 1 B(y) \; = \; y^9 + 6y^8 +13y^7 + 10y^6 - 2y^5 - y^4 + 3y^3 - y^2 - 3y - 1 Since B ( y ) = y ( y 8 + 6 y 7 + 13 y 6 + 10 y 5 2 y 4 y 3 + 2 y 2 + y 3 ) 1 = ( y + 1 ) ( y 8 + 5 y 7 + 8 y 6 + 2 y 5 4 y 4 + 3 y 3 y 2 ) 1 B(y) \; = \; y(y^8 + 6y^7 + 13y^6 + 10y^5 - 2y^4 - y^3 + 2y^2 + y - 3) - 1 \; = \; (y +1)(y^8 + 5y^7 + 8y^6 + 2y^5 - 4y^4 + 3y^3 - y - 2) - 1 we deduce that A ( y ) = ( y 8 + 6 y 7 + 13 y 6 + 10 y 5 2 y 4 y 3 + 2 y 2 + y 3 ) 4 + y 4 ( y 8 + 5 y 7 + 8 y 6 + 2 y 5 4 y 4 + 3 y 3 y 2 ) 4 + ( 1 + y ) 4 A(y) \; = \; (y^8 + 6y^7 + 13y^6 + 10y^5 - 2y^4 - y^3 + 2y^2 + y - 3)^4 + y^4(y^8 + 5y^7 + 8y^6 + 2y^5 - 4y^4 + 3y^3 - y - 2)^4 + (1+y)^4 for any y y such that A ( y ) = 0 A'(y) = 0 , namely such that B ( y ) = 0 B(y) = 0 . Finding the polynomial remainder when dividing this last polynomial in y y by B ( y ) B(y) , we deduce that A ( y ) = 28 y 8 155 y 7 291 y 6 140 y 5 + 130 y 4 24 y 3 65 y 2 + 71 y + 55 A(y) \; = \; -28y^8 - 155y^7 - 291y^6 - 140y^5 + 130y^4 - 24y^3 - 65y^2 + 71y + 55 for any y y such that B ( y ) = 0 B(y) = 0 . If we define m = 28 y 8 155 y 7 291 y 6 140 y 5 + 130 y 4 24 y 3 65 y 2 + 71 y + 55 m = -28y^8 - 155y^7 - 291y^6 - 140y^5 + 130y^4 - 24y^3 - 65y^2 + 71y + 55 , and calculate the remainder when the expression m 3 7 m 2 + 3 m m^3 - 7m^2 + 3m is divided by B ( y ) B(y) , we obtain the constant 898 898 .

Thus any extremal value of the original problem is a solution of the cubic m 3 7 m 2 + 3 m 898 = 0 m^3 - 7m^2 + 3m - 898 = 0 , and so certainly any minimum value of the problem is a solution of that cubic. Hence we see that p = 898 p = \boxed{-898} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...