Let , , and be real numbers and be the minimum value of the expression
If is a root of the equation , find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We are asked to minimize ( y x ) 4 + ( x + y y ) 4 + ( x x + y ) 4 over all x , y > 0 . This expression is homogeneous in x and y , so this is equvalent to asking to minimize (putting x = 1 ): A ( y ) = y − 4 + ( 1 + y y ) 4 + ( 1 + y ) 4 Now A ′ ( y ) = y 5 ( 1 + y ) 5 4 ( 1 + y + y 2 ) 2 B ( y ) where B ( y ) = y 9 + 6 y 8 + 1 3 y 7 + 1 0 y 6 − 2 y 5 − y 4 + 3 y 3 − y 2 − 3 y − 1 Since B ( y ) = y ( y 8 + 6 y 7 + 1 3 y 6 + 1 0 y 5 − 2 y 4 − y 3 + 2 y 2 + y − 3 ) − 1 = ( y + 1 ) ( y 8 + 5 y 7 + 8 y 6 + 2 y 5 − 4 y 4 + 3 y 3 − y − 2 ) − 1 we deduce that A ( y ) = ( y 8 + 6 y 7 + 1 3 y 6 + 1 0 y 5 − 2 y 4 − y 3 + 2 y 2 + y − 3 ) 4 + y 4 ( y 8 + 5 y 7 + 8 y 6 + 2 y 5 − 4 y 4 + 3 y 3 − y − 2 ) 4 + ( 1 + y ) 4 for any y such that A ′ ( y ) = 0 , namely such that B ( y ) = 0 . Finding the polynomial remainder when dividing this last polynomial in y by B ( y ) , we deduce that A ( y ) = − 2 8 y 8 − 1 5 5 y 7 − 2 9 1 y 6 − 1 4 0 y 5 + 1 3 0 y 4 − 2 4 y 3 − 6 5 y 2 + 7 1 y + 5 5 for any y such that B ( y ) = 0 . If we define m = − 2 8 y 8 − 1 5 5 y 7 − 2 9 1 y 6 − 1 4 0 y 5 + 1 3 0 y 4 − 2 4 y 3 − 6 5 y 2 + 7 1 y + 5 5 , and calculate the remainder when the expression m 3 − 7 m 2 + 3 m is divided by B ( y ) , we obtain the constant 8 9 8 .
Thus any extremal value of the original problem is a solution of the cubic m 3 − 7 m 2 + 3 m − 8 9 8 = 0 , and so certainly any minimum value of the problem is a solution of that cubic. Hence we see that p = − 8 9 8 .