Extreme Value with Triangle 3

Algebra Level 2

Find the maximum value of sin A + sin B sin C \sin A+\sin B \sin C in A B C . \triangle ABC.


The answer is 1.61803.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note first that sin ( B ) sin ( C ) = 1 2 ( cos ( B C ) cos ( B + C ) ) = 1 2 ( cos ( B C ) + cos ( A ) ) \sin(B)\sin(C) = \dfrac{1}{2}(\cos(B - C) - \cos(B + C)) = \dfrac{1}{2}(\cos(B - C) + \cos(A)) , since A = π ( B + C ) A = \pi - (B + C) . Thus

sin ( A ) + sin ( B ) sin ( C ) = sin ( A ) + 1 2 cos ( A ) + 1 2 cos ( B C ) = 5 2 ( 2 5 sin ( A ) + 1 5 cos ( A ) ) + 1 2 cos ( B C ) = 5 2 sin ( A + θ ) + 1 2 cos ( B C ) \sin(A) + \sin(B)\sin(C) = \sin(A) + \dfrac{1}{2}\cos(A) + \dfrac{1}{2}\cos(B - C) = \dfrac{\sqrt{5}}{2}\left(\dfrac{2}{\sqrt{5}}\sin(A) + \dfrac{1}{\sqrt{5}}\cos(A)\right) + \dfrac{1}{2}\cos(B - C) = \dfrac{\sqrt{5}}{2}\sin(A + \theta) + \dfrac{1}{2}\cos(B - C) ,

where θ = arcsin ( 1 5 ) \theta = \arcsin\left(\dfrac{1}{\sqrt{5}}\right) . This expression is maximized when A + θ = π 2 A + \theta = \dfrac{\pi}{2} and B = C B = C , resulting in a maximum of 5 + 1 2 1.618 \dfrac{\sqrt{5} + 1}{2} \approx \boxed{1.618} .

Coincidentally, the resultant value is equal to ϕ \phi . :)

Naren Bhandari - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...