Extremum value

Algebra Level 4

If x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 , then what is maximum value of ( 2 z 3 y ) 2 + ( 3 x z ) 2 + ( y 2 x ) 2 ? (2z-3y)^2+(3x-z)^2+(y-2x)^2?


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dan Huang
Aug 31, 2019

Here is a solution without vectors.

( x + 2 y + 3 z ) 2 + ( 2 z 3 y ) 2 + ( 3 x z ) 2 + ( y 2 x ) 2 = 14 ( x 2 + y 2 + z 2 ) = 14 (x+2y+3z)^2 + (2z-3y)^2+ (3x-z)^2 + (y-2x)^2 = 14(x^2+y^2+z^2)=14

( 2 z 3 y ) 2 + ( 3 x z ) 2 + ( y 2 x ) 2 = 14 ( x + 2 y + 3 z ) 2 (2z-3y)^2+ (3x-z)^2 + (y-2x)^2 = 14 - (x+2y+3z)^2

Therefore, in order to maximize the left side of the equation, we have to minimize ( x + 2 y + 3 z ) 2 (x+2y+3z)^2 . Since it is a square, the minimum value is 0. The values ( 1 / 3 , 1 / 3 , 1 / 3 (\sqrt{1/3} , \sqrt{1/3}, -\sqrt{1/3} ) work.

Sameer Mishra
Mar 2, 2018

Let vector A=xi+yj+zk,B=1i+2j+3k now take magnitude of A×B then get 14^1/2×(x^2+y^2+z^2)sinp,but max(sinp)=1and x^2+y^2+z^2=1 so maximum value is 14

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...