Logarithms

Algebra Level 4

log 2 x log 3 x log 5 x = log 2 x log 3 x + log 2 x log 5 x + log 3 x log 5 x \large \log _{ 2 }{ x } \log _{ 3 }{ x } \log _{ 5 }{ x } = \log _{ 2 }{ x } \log _{ 3 }{x}+\log _{ 2 }{ x } \log _{ 5 }{x}+\log _{ 3 }{ x } \log _{ 5 }{x}

Find all the values of x x that satisfy the equation above. Submit your answer as the sum of all the x x values.


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

log 2 x log 3 x log 5 x = log 2 x log 3 x + log 2 x log 5 x + log 3 x log 5 x ( log x ) 3 log 2 log 3 log 5 = ( log x ) 2 log 2 log 3 + ( log x ) 2 log 2 log 5 + ( log x ) 2 log 3 log 5 ( log x ) 3 = ( log 2 + log 3 + log 5 ) ( log x ) 2 = log 30 ( log x ) 2 ( log x ) 2 ( log x log 30 ) = 0 \begin{aligned} \log_2 x \log_3 x \log_5 x & = \log_2 x \log_3 x +\log_2 x \log_5 x + \log_3 x \log_5 x \\ \frac {(\log x)^3}{\log 2 \log 3 \log 5} & = \frac {(\log x)^2}{\log 2 \log 3} + \frac {(\log x)^2}{\log 2 \log 5} + \frac {(\log x)^2}{\log 3 \log 5} \\ (\log x)^3 & = (\log 2 + \log 3 + \log 5)(\log x)^2 \\ & = \log 30 (\log x)^2 \\ (\log x)^2 (\log x - \log 30) & = 0 \end{aligned}

{ log x = 0 x = 1 log x = log 30 x = 30 \implies \begin{cases} \log x = 0 & \implies x = 1 \\ \log x = \log 30 & \implies x = 30 \end{cases}

Therefore, the sum of all the x x roots is 30 + 1 = 31 30+1=\boxed{31} .

Pablo Ruiz
May 2, 2017

When x = 1 x=1 It's easy to see that both sides equal 0, hence 1 is a value of x that satisfy the equation When x 1 x\ne1 We can divide both sides by log 2 x log 3 x log 5 x \log _{ 2 }{ x } \log _{ 3 }{ x } \log _{ 5 }{ x } and we get 1 = 1 log 5 x + 1 log x 3 + 1 log x 2 1=\frac { 1 }{ \log _{ 5 }{ x } } +\frac { 1 }{ \log _{ x }{ 3 } } +\frac { 1 }{ \log _{ x }{ 2 } } With the change of base formula we get 1 = log x 5 + log x 3 + log x 2 1=\log _{ x }{ 5 } +\log _{ x }{ 3 } +\log _{ x }{ 2 } Which can be expressed as 1 = log x ( 5 × 3 × 2 ) = log x 30 1=\log _{ x }{ (5\times 3\times 2) } =\log _{ x }{ 30 } Thus x = 30 x=30 And the sum of both values of x is 31

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...