lo g 2 x lo g 3 x lo g 5 x = lo g 2 x lo g 3 x + lo g 2 x lo g 5 x + lo g 3 x lo g 5 x
Find all the values of x that satisfy the equation above. Submit your answer as the sum of all the x values.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
When x = 1 It's easy to see that both sides equal 0, hence 1 is a value of x that satisfy the equation When x = 1 We can divide both sides by lo g 2 x lo g 3 x lo g 5 x and we get 1 = lo g 5 x 1 + lo g x 3 1 + lo g x 2 1 With the change of base formula we get 1 = lo g x 5 + lo g x 3 + lo g x 2 Which can be expressed as 1 = lo g x ( 5 × 3 × 2 ) = lo g x 3 0 Thus x = 3 0 And the sum of both values of x is 31
Problem Loading...
Note Loading...
Set Loading...
lo g 2 x lo g 3 x lo g 5 x lo g 2 lo g 3 lo g 5 ( lo g x ) 3 ( lo g x ) 3 ( lo g x ) 2 ( lo g x − lo g 3 0 ) = lo g 2 x lo g 3 x + lo g 2 x lo g 5 x + lo g 3 x lo g 5 x = lo g 2 lo g 3 ( lo g x ) 2 + lo g 2 lo g 5 ( lo g x ) 2 + lo g 3 lo g 5 ( lo g x ) 2 = ( lo g 2 + lo g 3 + lo g 5 ) ( lo g x ) 2 = lo g 3 0 ( lo g x ) 2 = 0
⟹ { lo g x = 0 lo g x = lo g 3 0 ⟹ x = 1 ⟹ x = 3 0
Therefore, the sum of all the x roots is 3 0 + 1 = 3 1 .