f 1 ( x ) f^{-1}(x) Does not means 1 f ( x ) \frac{1}{f(x)}

Calculus Level 2

Let f : R R f:\mathbb{R}\rightarrow \mathbb{R} be defined by f ( x ) = x 3 + 3 x + 1 f(x) = x^3+3x+1 and g g be the inverse of f f . If the value of g ( 5 ) g''(5) is equal to a b \dfrac{-a}{b} , where a a and b b are coprime positive integers, find the value of a + b a+b .


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tanishq Varshney
Mar 26, 2015

g ( x ) = f 1 ( x ) f 1 ( f ( x ) ) = x g ( f ( x ) ) = x g(x)=f^{ -1 }\left( x \right) \\ \\ f^{ -1 }\left( f\left( x \right) \right) =x\\ \\ g(f(x))=x

Differentiating

g ( f ( x ) ) f ( x ) = 1 g^{ \prime }\left( f(x) \right) *f^{ \prime }\left( x \right) =1

g ( f ( x ) ) = 1 f ( x ) g^{ \prime }\left( f(x) \right) =\frac { 1 }{ f^{ \prime }\left( x \right) } \\ ....... ( 1 ) (1)

Also f ( 1 ) = 5 f(1)=5 . u can check that by equation f ( x ) = 5 f(x)=5

On again differentiating ( 1 ) (1)

g ( f ( x ) ) = f ( x ) ( f ( x ) ) 3 g^{ \prime \prime }\left( f(x) \right) =\frac { -f^{ \prime \prime }\left( x \right) }{ { (f^{ \prime }\left( x \right) })^{ 3 } }

f ( x ) = 3 x 2 + 3 a n d f ( x ) = 6 x f^{ \prime }\left( x \right) =3{ x }^{ 2 }+3\quad and\quad f^{ \prime \prime }\left( x \right) =6x

g ( f ( 1 ) ) = f ( 1 ) ( f ( 1 ) ) 3 g^{ \prime \prime }(f(1))=\frac { -f^{ \prime \prime }\left( 1 \right) }{ { (f^{ \prime }\left( 1 \right) })^{ 3 } }

g ( 5 ) = 6 ( 6 ) 3 g^{ \prime \prime }(5)=\frac { -6 }{ { (6 })^{ 3 } }

g ( 5 ) = 1 36 \boxed{g^{ \prime \prime }(5)=\frac { -1 }{ 36 } }

Do upvote

good work .

Ayush Verma - 6 years, 2 months ago

simply brilliant!! ¨ \ddot \smile

Kyle Finch - 6 years, 2 months ago

Nice problem ! :) Upvoted.

Keshav Tiwari - 6 years, 1 month ago

Did the same! Nice!

Kartik Sharma - 6 years, 2 months ago
Harry Ray
Sep 17, 2016

We note that since f ( 1 ) = 5 f(1) = 5 we have g ( 5 ) = 1 g(5) = 1 . Also, since g ( x ) g(x) is the inverse of f ( x ) f(x) it must satisfy: x = g ( x ) 3 + 3 g ( x ) + 1 x = g(x)^3 + 3g(x) + 1 Using implicit differentiation, solving for g ( x ) g^\prime(x) , and then evaluating at x = 5 x = 5 gives us: 1 = 3 g ( x ) g ( x ) 2 + 3 g ( x ) g ( x ) = 1 3 ( g ( x ) 2 + 1 ) g ( 5 ) = 1 6 \begin{aligned} 1 &= 3 g^\prime(x) g(x)^2 + 3 g^\prime(x) \\ g^\prime(x) &= \frac{1}{3\left( g(x)^2 + 1 \right)} \\ g^\prime(5) &= \frac{1}{6} \end{aligned} Using implicit differentiation again, solving for g ( x ) g^{\prime\prime}(x) , and then evaluating at x = 5 x = 5 gives us: 0 = 6 ( g ( x ) ) 2 g ( x ) + 3 g ( x ) g ( x ) 2 + 3 g ( x ) g ( x ) = 2 ( g ( x ) ) 2 g ( x ) g ( x ) 2 + 1 g ( 5 ) = 1 36 \begin{aligned} 0 &= 6 \left( g^\prime(x) \right)^2 g(x) + 3 g^{\prime\prime}(x) g(x)^2 + 3 g^{\prime\prime}(x) \\ g^{\prime\prime}(x) &= -\frac{2 \left( g^\prime(x) \right)^2 g(x)}{g(x)^2 + 1} \\ g^{\prime\prime}(5) &= -\frac{1}{36} \end{aligned} Therefore the solution is a + b = 37 a + b = \boxed{37} .

Lu Chee Ket
Dec 3, 2015

Conceptual way can sometime be an alternative to genuine way:

1
2
3
4.999994    0.999999    0.166666750019786           
5   1   0.166666583313631   -0.027767842013975  -   1/36    -0.027777777777778
5.000006    1.000001    0.166666416706495           

We must have consciousness in mind to apply the above method.

a + b = 1 + 36 = 37

Answer: 37 \boxed{37}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...