A force of constant magnitude F F starts acting on the end A A of a uniform rod A B AB of mass M M and length L L in gravity-free space. The force always remains perpendicular to the rod, even as it moves.

If a A \overrightarrow{a_{A}} is the acceleration of point A , A, then what is the value of the dot product F a A \overrightarrow{F} \cdot \overrightarrow{a_{A}} at any later time?

0 0 F 2 M \frac{F^2}{M} 2 F 2 M \frac{2F^2}{M} 3 F 2 M \frac{3F^2}{M} 4 F 2 M \frac{4F^2}{M}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Nov 9, 2018

Position at point of force application - relative to center of mass:

x = x c + L 2 c o s θ y = y c + L 2 s i n θ \large{x = x_c + \frac{L}{2} cos \theta \\ y = y_c + \frac{L}{2} sin \theta}

Velocity:

x ˙ = x c ˙ L 2 s i n θ θ ˙ y ˙ = y c ˙ + L 2 c o s θ θ ˙ \large{\dot{x} = \dot{x_c} - \frac{L}{2} sin \theta \, \dot{\theta} \\ \dot{y} = \dot{y_c} + \frac{L}{2} cos \theta \, \dot{\theta}}

Acceleration:

x ¨ = x c ¨ L 2 s i n θ θ ¨ L 2 c o s θ θ ˙ 2 y ¨ = y c ¨ + L 2 c o s θ θ ¨ L 2 s i n θ θ ˙ 2 \large{\ddot{x} = \ddot{x_c} - \frac{L}{2} sin \theta \, \ddot{\theta} - \frac{L}{2} cos \theta \, \dot{\theta}^2 \\ \ddot{y} = \ddot{y_c} + \frac{L}{2} cos \theta \, \ddot{\theta} - \frac{L}{2} sin \theta \, \dot{\theta}^2}

Angular Acceleration :

τ = I θ ¨ F L 2 = 1 12 M L 2 θ ¨ θ ¨ = 6 F M L \large{\tau = I \ddot{\theta} \\ F \frac{L}{2} = \frac{1}{12} M L^2 \, \ddot{\theta} \\ \ddot{\theta} = \frac{6 F}{M L}}

Vector Force :

F x = F s i n θ F y = F c o s θ \large{F_x = -F \, sin\theta \\ F_y = F \, cos\theta}

Acceleration of Center of Mass :

x c ¨ = F s i n θ M y c ¨ = F c o s θ M \large{\ddot{x_c} = \frac{-F \, sin\theta}{M} \\ \ddot{y_c} = \frac{F \, cos\theta}{M}}

Substituting angular acceleration and center of mass acceleration into x and y acceleration equations:

x ¨ = F s i n θ M 3 F M s i n θ L 2 c o s θ θ ˙ 2 = 4 F M s i n θ L 2 c o s θ θ ˙ 2 y ¨ = F c o s θ M + 3 F M c o s θ L 2 s i n θ θ ˙ 2 = 4 F M c o s θ L 2 s i n θ θ ˙ 2 \large{\ddot{x} = \frac{-F \, sin\theta}{M} - \frac{3 F}{M} sin \theta - \frac{L}{2} cos \theta \, \dot{\theta}^2 \\ = -\frac{4 F}{M} sin \theta - \frac{L}{2} cos \theta \, \dot{\theta}^2 \\ \ddot{y} = \frac{F \, cos\theta}{M} + \frac{3 F}{M} cos \theta - \frac{L}{2} sin \theta \, \dot{\theta}^2 \\ = \frac{4 F}{M} cos \theta - \frac{L}{2} sin \theta \, \dot{\theta}^2 }

Dot product between vector force and acceleration at application point:

F x x ¨ + F y y ¨ = 4 F 2 M s i n 2 θ + F L 2 s i n θ c o s θ θ ˙ 2 + 4 F 2 M c o s 2 θ F L 2 s i n θ c o s θ θ ˙ 2 = 4 F 2 M s i n 2 θ + 4 F 2 M c o s 2 θ = 4 F 2 M \large{F_x \, \ddot{x} + F_y \, \ddot{y } \\ = \frac{4 F^2}{M} sin^2 \theta + \frac{F L}{2} sin \theta \, cos \theta \, \dot{\theta}^2 + \frac{4 F^2}{M} cos^2 \theta - \frac{F L}{2} sin \theta \, cos \theta \, \dot{\theta}^2 \\ = \frac{4 F^2}{M} sin^2 \theta + \frac{4 F^2}{M} cos^2 \theta \\ = \frac{4 F^2}{M}}

Sir, can we solve this problem by IAR method ?

Vilakshan Gupta - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...