Factorize

Algebra Level 2

Factorize x 4 + 64 x^4+64 .

( x 2 + 4 x + 8 ) ( x 2 + 4 x + 8 ) (x^2 + 4x +8)(x^2 + 4x +8) ( x 2 + 4 x + 8 ) ( x 2 4 x + 8 ) (x^2 + 4x +8)(x^2 - 4x +8) ( x 2 + 8 ) 2 (x^2 +8)^2 x 4 + 64 x^4 + 64

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Jan 10, 2016

We rewrite x 4 + 64 x^4+64 as ( x ) 4 + 4 ( 2 ) 4 (x)^4 + 4(2)^4 which is a similar form of Sophie Germain identity which states that a 4 + 4 b 4 = ( a 2 + 2 a b + 2 b 2 ) ( a 2 2 a b + 2 b 2 ) a^4+4b^4=(a^2+2ab+2b^2)(a^2-2ab+2b^2) .Thus we have:

( x ) 4 + 4 ( 2 ) 4 = ( x 2 + 4 x + 8 ) ( x 2 4 x + 8 ) (x)^4 + 4(2)^4 = (x^2+4x+8)(x^2-4x+8)

did the same

Aryaman Das - 5 years, 5 months ago
Jonathan Dapadap
Jan 10, 2016

x 4 + 64 x 4 + 16 x 2 + 64 16 x 2 ( x 4 + 16 x 2 + 64 ) ( 16 x 2 ) ( x 2 + 8 ) 2 ( 4 x ) 2 ( x 2 + 8 + 4 x ) ( x 2 + 8 4 x ) ( x 2 + 4 x + 8 ) ( x 2 4 x + 8 ) x^4 + 64 \\ x^4 +16x^2 + 64 - 16x^2 \\ (x^4 +16x^2 + 64)-(16x^2) \\ (x^2+8)^2 - (4x)^2 \\ (x^2+8+4x)( x^2+8-4x) \\ (x^2+4x+8)(x^2-4x+8)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...