Factonimator.

Calculus Level 3

If

n = 0 10 625 n 4 + 1250 n 3 + 875 n 2 + 250 n + 24 = π a ( b + c d a b c d ) \sum_{n=0}^{\infty} \dfrac{10}{625n^4+1250n^3 +875n^2+250n+24}=\dfrac{\pi}{a}\left(\sqrt{b+ \dfrac{c}{\sqrt d}}-a\sqrt{b-\dfrac{c}{\sqrt d}}\right)

where a a , c c and d d are primes, find the value of ( a + b + c + d ) 2 (a+b+c+d)^2 .

This is an original problem .


The answer is 121.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 14, 2019

We note that 10 625 n 4 + 1250 n 3 + 873 n 2 + 250 n + 24 = 10 ( 5 n + 1 ) ( 5 n + 2 ) ( 5 n + 3 ) ( 5 n + 4 ) = 5 3 [ 1 5 n + 1 3 5 n + 2 + 3 5 n + 3 1 5 n + 4 ] = 1 3 [ 1 n + 1 5 3 n + 2 5 + 3 n + 3 5 1 n + 4 5 ] \begin{aligned} \frac{10}{625n^4 + 1250n^3 + 873n^2 + 250n + 24} & = \; \frac{10}{(5n+1)(5n+2)(5n+3)(5n+4)} \\ & = \; \frac{5}{3}\left[\frac{1}{5n+1} - \frac{3}{5n+2} + \frac{3}{5n+3} - \frac{1}{5n+4}\right] \; = \; \frac13\left[\frac{1}{n+\frac15} - \frac{3}{n+\frac25} + \frac{3}{n+\frac35} - \frac{1}{n + \frac45}\right] \end{aligned} so that n = 0 10 625 n 4 + 1250 n 3 + 873 n 2 + 250 n + 24 = 1 3 [ ψ ( 4 5 ) 3 ψ ( 3 5 ) + 3 ψ ( 2 5 ) ψ ( 1 5 ) ] = π 3 [ 1 + 2 5 3 1 2 5 ] \begin{aligned} \sum_{n=0}^\infty \frac{10}{625n^4 + 1250n^3 + 873n^2 + 250n + 24} & = \; \frac13\left[\psi(\tfrac45) - 3\psi(\tfrac35) + 3\psi(\tfrac25) - \psi(\tfrac15)\right] \\ & = \; \frac{\pi}{3}\left[\sqrt{1 + \frac{2}{\sqrt{5}}} - 3\sqrt{1 - \frac{2}{\sqrt{5}}}\right] \end{aligned} using Gauss' Digamma Theorem. Thus ( a + b + c + d ) 2 = ( 3 + 2 + 1 + 5 ) 2 = 121 (a+b+c+d)^2 = (3+2+1+5)^2 = \boxed{121} .

@Naren Bhandari , n n should start at 0 instead of 1.

Chew-Seong Cheong - 2 years ago

Log in to reply

I have reported that already.

Mark Hennings - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...