Factor

Is the number below is divisible by 2017? 0 ! + 1 × 1 ! + 2 × 2 ! + 3 × 3 ! + 4 × 4 ! + 5 × 5 ! + + 2016 × 2016 ! 0!+1\times 1!+2\times 2!+3\times 3!+4\times 4!+5\times 5!+\dots+2016\times 2016!

Yes, it is divisible by 2017 No, it is not divisible by 2017

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 25, 2017

S n = 0 ! + 1 × 1 ! + 2 × 2 ! + 3 × 3 ! + + n × n ! = 0 ! + k = 1 n k ( k ! ) = 1 + k = 1 n ( ( k + 1 ) k ! k ! ) = 1 + k = 1 n ( k + 1 ) ! k = 1 n k ! = 1 + ( n + 1 ) ! 1 ! = ( n + 1 ) ! \begin{aligned} S_n & = 0! + 1\times 1! + 2\times 2! + 3\times 3! + \cdots + n\times n! \\ & = 0! + \sum_{k=1}^n k(k!) \\ & = 1 + \sum_{k=1}^n \big((k+1)k! - k!\big) \\ & = 1 + \sum_{k=1}^n (k+1)! - \sum_{k=1}^n k! \\ & = 1 + (n+1)! - 1! \\ & = (n+1)! \end{aligned}

S 2016 = 2017 ! \implies S_{2016} = 2017! . Yes, it is divisible by 2017.

Sardor Yakupov
Aug 25, 2017

0 ! + 1 × 1 ! + 2 × 2 ! + . . . + 2016 × 2016 ! 1 + 1 × 1 ! + 2 × 2 ! . . . + 2016 × 2016 ! ( 1 + 1 ) × 1 ! + 2 × 2 ! . . . + 2016 × 2016 ! 2 ! + 2 × 2 ! + . . . + 2016 × 2016 ! ( 2 + 1 ) × 2 ! + . . . + 2016 × 2016 ! 3 ! + 3 × 3 ! . . . + 2016 × 2016 ! = 2017 ! 0!+1\times 1!+2\times 2!+...+2016\times 2016!\\ 1+1\times 1!+2\times 2!...+2016\times 2016!\\ (1+1)\times 1!+2\times 2!...+2016\times 2016!\\ 2!+2\times 2!+...+2016\times 2016!\\ (2+1)\times 2!+...+2016\times 2016!\\ 3!+3\times 3!...+2016\times 2016!=2017!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...