Factor of The Sequence

Algebra Level 2

S = 201 4 3 201 3 3 + 201 2 3 201 1 3 + + 2 3 1 3 \large S = 2014^{3}-2013^{3}+2012^{3}-2011^{3}+\cdots+2^{3}-1^{3}

What is the largest perfect square that divides S S above?

1 2 1^{2} 2 2 2^{2} 100 7 2 1007^{2} 201 4 2 2014^{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 13, 2016

Relevant wiki: Sum of n, n², or n³

S = 1 3 + 2 3 3 3 + 4 3 201 3 3 + 201 4 3 = ( 1 3 + 2 3 + 3 3 + + 201 4 3 ) + 2 ( 2 3 + 4 3 + 6 3 + + 201 4 3 ) = ( 1 3 + 2 3 + 3 3 + + 201 4 3 ) + 16 ( 1 3 + 2 3 + 3 3 + + 100 7 3 ) = ( 2014 ( 2015 ) 2 ) 2 + 16 ( 1007 ( 1008 ) 2 ) 2 = 100 7 2 × 201 5 2 + 4 × 100 7 2 × 100 8 2 = 100 7 2 ( 201 6 2 201 5 2 ) = 100 7 2 ( 2016 2015 ) ( 2016 + 2015 ) = 100 7 2 × 4031 = 100 7 2 × 29 × 139 \begin{aligned} S & = -1^3 + 2^3 - 3^3 + 4^3 - \cdots - 2013^3 + 2014^3 \\ & = - \left(1^3 + 2^3 + 3^3 + \cdots + 2014^3 \right) + 2 \left( 2^3 + 4^3 + 6^3 + \cdots + 2014^3 \right) \\ & = - \left(1^3 + 2^3 + 3^3 + \cdots + 2014^3 \right) + 16 \left( 1^3 + 2^3 + 3^3 + \cdots + 1007^3 \right) \\ & = - \left(\frac {2014(2015)}2\right)^2 + 16 \left(\frac {1007(1008)}2\right)^2 \\ & = - 1007^2\times 2015^2 + 4\times 1007^2 \times 1008^2 \\ & = 1007^2 \left(2016^2-2015^2 \right) \\ & = 1007^2 ( 2016-2015 ) ( 2016+2015) \\ & = 1007^2 \times 4031 \\ & = 1007^2 \times 29 \times 139 \end{aligned}

Therefore, the largest perfect square that divides S S is 100 7 2 \boxed{1007^2} .

Help me out in this

Hritesh Mourya - 4 years, 11 months ago

How did you jump from 2(2^3 + 4^3 +...........2014^3) to 16(1^3 + 2^3 +.......1007^3)?

Yatin Khanna - 4 years, 9 months ago

Log in to reply

Okay...I understood; great solution Sir!

Yatin Khanna - 4 years, 9 months ago
Joe Potillor
Oct 29, 2016

Using the summation for cubes (n^2 (n+1)^2)/4...since the signs alternate, we use (-1)^(n+1) to match our signs.

From there plugging in n = 2014 becomes the following:

(-1)^(2015)( (2014)^2 (2015)^2)/4

2014 = 1007 * 2

We don't really care about the negative sign as it has nothing to do with what were looking for,but I'll leave it in , so the sum becomes (-1)((1007*2)^2 (2015)^2)/4

=(-1) (1007)^2 (2015)^2

Hence (1007)^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...