Factor the Polynomial

Algebra Level 3

Consider the polynomial f ( x ) = x 10 + x 5 + 1 f(x) = x^{10} + x^5 + 1 . It is possible to write f ( x ) = g ( x ) h ( x ) f(x) = g(x)h(x) , where g ( x ) g(x) and h ( x ) h(x) are non-constant polynomials with integer coefficients.

Find g ( 2 ) + h ( 2 ) g(2) + h(2) .

0 158 1057 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By putting x = ω x=\omega , where ω \omega is the cube root of unity, we note that f ( ω ) = ω 10 + ω 5 + 1 = ω + ω 2 + 1 = 0 f(\omega) = \omega^{10}+\omega^5 + 1 = \omega + \omega^2 + 1 = 0 . This means that x 2 + x + 1 x^2+x+1 is a factor of f ( x ) f(x) . By long division we have f ( x ) = ( x 2 + x + 1 ) ( x 8 x 7 + x 5 x 4 + x 3 x + 1 ) f(x) = (x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1) (see note below), Let g ( x ) = x 2 + x + 1 g(x) = x^2 + x+1 and h ( x ) = x 8 x 7 + x 5 x 4 + x 3 x + 1 h(x) = x^8-x^7+x^5-x^4+x^3-x+1 . Then g ( 2 ) = 7 g(2) = 7 and h ( 2 ) = 151 h(2) = 151 and g ( 2 ) + h ( 2 ) = 158 g(2) + h(2) = \boxed{158} .


Note:

f ( x ) = x 10 + x 5 + 1 = x 8 ( x 2 + x + 1 ) x 7 ( x 2 + x + 1 ) + x 5 ( x 2 + x + 1 ) x 4 ( x 2 + x + 1 ) + x 3 ( x 2 + x + 1 ) x ( x 2 + x + 1 ) + x 2 + x + 1 = ( x 2 + x + 1 ) ( x 8 x 7 + x 5 x 4 + x 3 x + 1 ) \begin{aligned} f(x) & =x^{10} + x^5 + 1 \\ & = x^8(x^2 +x+1) - x^7(x^2+x+1) + x^5(x^2+x+1) - x^4(x^2+x+1) +x^3(x^2+x+1) - x(x^2 + x+1) + x^2+x+1 \\ & = (x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1) \end{aligned}

Jam M
Feb 1, 2019

f ( x ) = x 10 + x 5 + 1 = ( x 5 ) 2 + x 5 + 1 = ( x 5 ) 3 1 x 5 1 = ( x 3 ) 5 1 x 5 1 = ( x 3 1 ) ( x 12 + x 9 + x 6 + x 3 + 1 ) x 5 1 f(x) = x^{10} + x^5 + 1 = (x^5)^2 + x^5 + 1 = \dfrac{(x^5)^3 - 1}{x^5 - 1} = \dfrac{(x^3)^5 -1}{x^5 -1} = \dfrac{(x^3-1)(x^{12} + x^9 + x^6 + x^3 + 1)}{x^5 - 1} = ( x 1 ) ( x 2 + x + 1 ) ( x 12 + x 9 + x 6 + x 3 + 1 ) ( x 1 ) ( x 4 + x 3 + x 2 + x + 1 ) = ( x 2 + x + 1 ) ( x 12 + x 9 + x 6 + x 3 + 1 ) ( x 4 + x 3 + x 2 + x + 1 ) = \dfrac{(x-1)(x^2+x+1)(x^{12} + x^9 + x^6 + x^3 + 1)}{(x-1)(x^4 + x^3 + x^2 + x + 1)} = \dfrac{(x^2+x+1)(x^{12} + x^9 + x^6 + x^3 + 1)}{(x^4 + x^3 + x^2 + x + 1)} By long division, x 12 + x 9 + x 6 + x 3 + 1 = ( x 4 + x 3 + x 2 + x + 1 ) ( x 8 x 7 + x 5 x 4 + x 3 x + 1 ) x^{12} + x^9 + x^6 + x^3 + 1 = (x^4 + x^3 + x^2 + x + 1)(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) so that f ( x ) = ( x 2 + x + 1 ) ( x 4 + x 3 + x 2 + x + 1 ) ( x 8 x 7 + x 5 x 4 + x 3 x + 1 ) ( x 4 + x 3 + x 2 + x + 1 ) = ( x 2 + x + 1 ) ( x 8 x 7 + x 5 x 4 + x 3 x + 1 ) = g ( x ) h ( x ) f(x) = \dfrac{(x^2+x+1)(x^4 + x^3 + x^2 + x + 1)(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)}{(x^4 + x^3 + x^2 + x + 1)} \\ = (x^2 + x + 1)(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) = g(x)h(x) g ( 2 ) + h ( 2 ) = 7 + 151 = 158 g(2) + h(2) = 7 + 151 = 158

Yup......this is how I proceeded..........Is there any way we can generalize this??

Aaghaz Mahajan - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...