Factoraddition

Inclusive of 1 and itself, what is the sum of the divisors of 1 0 5 10^5 ?


The answer is 246078.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Md Omur Faruque
Aug 28, 2015

1 0 5 = ( 2 × 5 ) 5 = 2 5 × 5 5 10^5=(2\times5)^5=2^5\times5 ^5

So, including 1 1 & 1 0 5 10^5 , divisors of 1 0 5 10^5 will be,

2 0 5 0 , 2 0 5 1 , 2 0 5 2 , 2 0 5 3 , 2 0 5 4 , 2 0 5 5 , 2 1 5 0 , . . . . . . , 2 5 5 3 , 2 5 5 4 , 2 5 5 5 2^05^0,2^05^1,2^05^2,2^05^3,2^05^4,2^05^5,2^15^0,......,2^55^3,2^55^4,2^55^5

That’s where we get the number of total divisors. \color{#0C6AC7} {\text{That's where we get the number of total divisors.}} In this case it’s, (5+1)(5+1)=36 \color{#0C6AC7} {\text{In this case it's, (5+1)(5+1)=36}}

Thus, sum of the divisors will be, 2 0 ( 5 0 + 5 1 + 5 2 + 5 3 + 5 4 + 5 5 ) + . . . . . . + 2 5 ( 5 0 + 5 1 + 5 2 + 5 3 + 5 4 + 5 5 ) 2^0(5^0+5^1+5^2+5^3+5^4+5^5)+......+2^5(5^0+5^1+5^2+5^3+5^4+5^5) = ( 2 0 + 2 1 + 2 2 + 2 3 + 2 4 + 2 5 ) ( 5 0 + 5 1 + 5 2 + 5 3 + 5 4 + 5 5 ) =(2^0+2^1+2^2+2^3+2^4+2^5)(5^0+5^1+5^2+5^3+5^4+5^5) = ( 2 0 × 2 5 + 1 1 2 1 ) ( 5 0 × 5 5 + 1 1 5 1 ) =\left(2^0\times\frac{2^{5+1}-1}{2-1}\right)\left(5^0\times\frac{5^{5+1}-1}{5-1}\right) [ As sum of geometric progression till n t h term is, a r n + 1 1 r 1 where r > 1 ] \color{#0C6AC7} {[\text{As sum of geometric progression till } n^{th} \text{ term is,} \, a\frac{r^{n+1}-1}{r-1}\, \text{where} \, r>1]} = 63 × 3906 =63\times3906 = 246078 =\color{#69047E} {\boxed{246078}}

Very nice. You should add the generalized formula that you just proved, in at the end.

Jason Short - 5 years, 9 months ago

Log in to reply

The generalized formula has already been given by Sir Brian Charlesworth. So, I posted a solution without applying any formula.

MD Omur Faruque - 5 years, 9 months ago

The formula for the sum of the divisors of an integer N N is

i = 1 k p i m i + 1 1 p i 1 , \displaystyle\prod_{i=1}^{k} \dfrac{p_{i}^{m_{i} + 1} - 1}{p_{i} - 1},

where the p i p_{i} 's are the distinct prime factors in the factorization of N N and the m i m_{i} 's are the corresponding multiplicities.

Now 1 0 5 = 2 5 5 5 , 10^{5} = 2^{5}5^{5}, so we have p 1 = 2 , m 1 = 5 p_{1} = 2, m_{1} = 5 and p 2 = 5 , m 2 = 5. p_{2} = 5, m_{2} = 5. Plugging these values into the formula gives us that the sum of all positive divisors of 1 0 5 10^{5} is

2 6 1 2 1 × 5 6 1 5 1 = 246078 . \dfrac{2^{6} - 1}{2 - 1} \times \dfrac{5^{6} - 1}{5 - 1} = \boxed{246078}.

Tony Flury
Aug 31, 2015

Brute force and ignorance for me - using python :

n = 10**5
s = 0
for i in range(1,n+1):
    s += i if n % i == 0 else 0
print s

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...