Fraction Of Factorials

9 ! + 8 ! 8 ! = ? \large\dfrac{9!+8!}{8!} = \, ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Ooi Ming Yang
Apr 12, 2016

Note that n ! = n × ( n 1 ) × ( n 2 ) × . . . × 1 n!=n \times (n-1) \times (n-2) \times ... \times 1 where n > 0 n>0

9 ! + 8 ! 8 ! \frac {9!+8!}{8!}

= 9 ( 8 ! ) + 8 ! 8 ! =\frac {9(8!)+8!}{8!}

= 8 ! ( 9 + 1 ) 8 ! =\frac {8!(9+1)}{8!}

= 9 + 1 =9+1

= 10 =\boxed{10}

Fact: x = 1 n n = n ! \displaystyle \prod_{x=1}^n n =n!

Lâm Lê - 9 months, 1 week ago

9 ! + 8 ! 8 ! \Rightarrow \dfrac{9!+8!}{8!}

8 ! ( 9 + 1 ) 8 ! = 10 \Rightarrow \dfrac{8!(9+1)}{8!}=\boxed{10}

_9*8! + 8! _ _ =9(8! +8!)= 8!(9+ 1)/8! =10

                  8!                     8!

Arturo Supremo - 3 years, 5 months ago

I did the same

Himel Changma - 5 years, 1 month ago

Note that

  • n ! = n × ( n 1 ) × × 2 × 1 n! = n \times (n-1) \times \dots \times 2 \times 1
  • ( n + 1 ) ! = ( n + 1 ) × n ! (n+1)! = (n+1) \times n!

Now,

8 ! + 9 ! 8 ! \frac {8! + 9!}{8!}

= = 9 × ( 8 ! ) + 1 × ( 8 ! ) 8 ! \frac {9 \times (8!) +1 \times (8!)}{8!}

= ( 9 + 1 ) × ( 8 ! ) 8 ! = \frac {(9+1) \times (8!)}{8!}

= 10 × ( 8 ! ) 8 ! = \frac {10 \times (8!)}{8!}

= 10 × 8 ! 8 ! = 10 \times \frac {8!}{8!}

= 10 × 1 = 10 \times 1

= 10 = \boxed{10}

Lâm Lê
Sep 9, 2020

9 ! + 8 ! 8 ! = 9 ! 8 ! + 8 ! 8 ! = 9 ! 8 ! + 1 = 9 + 1 = 10 \frac{9!+8!}{8!}=\frac{9!}{8!}+\frac{8!}{8!}=\frac{9!}{8!}+1=9+1=\boxed{10}

Betty BellaItalia
Dec 18, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...