-Factorial-

Calculus Level 2

3 2 ! \large \left\lfloor \frac { 3 }{ 2 } ! \right\rfloor


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

X X
May 8, 2018

1!<1.5!<2!,1<1.5!<2,so the answer is 1

. .
Apr 21, 2021

3 2 ! = 1 \displaystyle \lfloor { \frac { 3 } { 2 } ! } \rfloor = 1 .

Will McGlaughlin
May 8, 2018

Obviously this question goes beyond the definition of the usual factorial function.

n ! = n ( n 1 ) ! n!=n(n-1)!

3 2 ! = 3 2 ( 3 2 1 ) ! \frac { 3 }{ 2 } !=\frac { 3 }{ 2 } (\frac { 3 }{ 2 } -1)!

3 2 ! = 3 2 ( 1 2 ) ! \frac { 3 }{ 2 } !=\frac { 3 }{ 2 } (\frac { 1 }{ 2 } )!

We know that n ! = Π ( n ) = 0 t n e t d t n!=\Pi (n)=\int _{ 0 }^{ \infty }{ { t }^{ n } } { e }^{ -t }dt

So 1 2 ! = Π ( 1 2 ) = 0 t e t d t \frac { 1 }{ 2 } !=\Pi (\frac { 1 }{ 2 } )=\int _{ 0 }^{ \infty }{ \sqrt { t } } { e }^{ -t }dt

Solving for 0 t e t d t \int _{ 0 }^{ \infty }{ \sqrt { t } } { e }^{ -t }dt

we can let u = t , u 2 = t , 2 u d u = d t u=\sqrt { t } ,\quad { u }^{ 2 }=t,\quad 2udu=dt

We then get the integral 2 0 u 2 e u 2 d u 2\int _{ 0 }^{ \infty }{ { u }^{ 2 } } { e }^{ -{ u }^{ 2 } }du

Integrating by parts we reach the result 0 e u 2 d u \int _{ 0 }^{ \infty }{ { e }^{ -{ u }^{ 2 } } } du

This is almost the famous Gaussian Integral but instead this goes from u = 0 , u=0,\infty

This leaves us with the result ( 1 2 ) ! = π 2 (\frac { 1 }{ 2 } )!=\frac { \sqrt { \pi } }{ 2 }

Multiplying this by 3 2 \frac { 3 }{ 2 } we get 3 π 4 \frac { 3\sqrt { \pi } }{ 4 }

Therefore 3 2 ! = 3 π 4 \frac { 3 }{ 2 } !=\frac { 3\sqrt { \pi } }{ 4 }

3 π 4 = 1 \left\lfloor \frac { 3\sqrt { \pi } }{ 4 } \right\rfloor =\boxed{1}

please give beautiful solutions not bashy ones

ALEKHYA CHINA - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...