Factorial !

Evaluate

i = 1 2019 lcm ( 1 , 2 , . . . , 2019 i ) i = 1 2018 lcm ( 1 , 2 , . . . , 2018 i ) \frac { \displaystyle \prod _{ i=1 }^{ 2019 }{ \text{lcm}\left( 1, 2, ..., \left\lfloor \frac { 2019 }{ i } \right\rfloor \right) } }{\displaystyle \prod _{ i=1 }^{ 2018 }{ \text{lcm}\left( 1, 2, ..., \left\lfloor \frac { 2018 }{ i } \right\rfloor \right) } }


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
May 27, 2018

It equals i = 1 2018 l c m ( 1 , 2 , . . . , 2019 i ) i = 1 2018 l c m ( 1 , 2 , . . . , 2018 i ) \large\ \frac { \displaystyle \prod _{ i=1 }^{ 2018 }{ lcm\left( 1, 2, ..., \left\lfloor \frac { 2019 }{ i } \right\rfloor \right) } }{\displaystyle \prod _{ i=1 }^{ 2018 }{ lcm\left( 1, 2, ..., \left\lfloor \frac { 2018 }{ i } \right\rfloor \right) } } So find where l c m ( 1 , 2 , . . . , 2019 i ) l c m ( 1 , 2 , . . . , 2018 i ) lcm\left( 1, 2, ..., \left\lfloor \frac { 2019 }{ i } \right\rfloor\right) \ne lcm\left( 1, 2, ..., \left\lfloor \frac { 2018 }{ i } \right\rfloor\right) This only happens when 2019 i 2018 i \left\lfloor \frac { 2019 }{ i } \right\rfloor\ne\left\lfloor \frac { 2018 }{ i } \right\rfloor That is when i i is a divisor of 2019,and 2019 i \dfrac { 2019 }{ i } can be expressed as p n p^n ,where p p is a prime, n n is a positive integer.

2019 = 673 × 3 2019=673\times3 ,solving and get i = 673 i=673 or 3 3 .Putting back, 673 × 3 = 2019 673\times3=2019

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...