Factorial Base 4

Let N N be the number of digits of ( 100 0 4 ) ! ( 33 2 4 ) ! \large {\dfrac{(1000_4)!}{(332_4)!}} in base 4. Find N N .

Notations :

  • ! ! represents the factorial notation.

  • a b a_b means a a base b b . The numbers in the problem above are in base 4.


This problem is from the Who Wants to Be A Mathematician competition.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex G
Apr 11, 2016

Relevant wiki: Number Base - Problem Solving

( 100 0 4 ) ! = 100 0 4 33 3 4 ( 33 2 4 ) ! \large {(1000_4)! = 1000_4 * 333_4 * (332_4)!}

100 0 4 33 3 4 ( 33 2 4 ) ! ( 33 2 4 ) ! = 100 0 4 33 3 4 = 33300 0 4 \large {\frac{1000_4 * 333_4 * (332_4)!}{(332_4)!} = 1000_4 * 333_4 = 333000_4}

6 \large {\boxed {6}}

Leonardo Vannini
May 12, 2016

( 1000 4 ) ! ( 332 4 ) ! = ( 64 10 ) ! ( 62 10 ) ! = ( 64 63 ) 10 < ( 64 64 ) 10 = 4 10 6 = 1000000 4 \frac { { (1000 }_{ 4 })! }{ { (332 }_{ 4 })! } =\frac { { (64 }_{ 10 })! }{ { (62 }_{ 10 })! } ={ (64\cdot 63) }_{ 10 }<{ (64\cdot 64) }_{ 10 }={ 4 }_{ 10 }^{ 6 }={ 1000000 }_{ 4 } hence ( 1000 4 ) ! ( 332 4 ) ! < 1000000 4 \frac { { (1000 }_{ 4 })! }{ { (332 }_{ 4 })! } <{ 1000000 }_{ 4 } so N=6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...