Factorial by Factorial

Calculus Level 5

Let

n = 0 ( 2 n ) ! ( 2 n + 5 ) ! = A ln 2 + B \sum_{n=0}^{\infty}\frac{(2n)!}{(2n+5)!}=A\ln2+B

where A A and B B are rational numbers. Find 1 A + B \dfrac1{A+B} .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 19, 2020

S = n = 0 ( 2 n ) ! ( 2 n + 5 ) ! = n = 0 1 ( 2 n + 1 ) ( 2 n + 2 ) ( 2 n + 3 ) ( 2 n + 4 ) ( 2 n + 5 ) By partial fraction decomposition = 1 24 n = 0 ( 1 2 n + 1 4 2 n + 2 + 6 2 n + 3 4 2 n + 4 + 1 2 n + 5 ) \begin{aligned} S & = \sum_{n=0}^\infty \frac {(2n)!}{(2n+5)!} \\ & = \sum_{n=0}^\infty \frac 1{(2n+1)(2n+2)(2n+3)(2n+4)(2n+5)} & \small \blue{\text{By partial fraction decomposition}} \\ & = \frac 1{24} \sum_{n=0}^\infty \left(\frac 1{2n+1} - \frac 4{2n+2} + \frac 6{2n+3} - \frac 4{2n+4} + \frac 1{2n+5} \right) \end{aligned}

= 1 24 ( 1 1 4 2 + 6 3 4 4 + 1 5 + 1 3 4 4 + 6 5 4 6 + 1 7 + 1 5 4 6 + 6 7 4 8 + 1 9 + ) = 1 24 ( 1 1 4 2 + 7 3 8 4 + 8 5 8 6 + 8 7 8 8 + 8 9 ) = 1 24 ( 8 1 8 2 + 8 3 8 4 + 8 5 8 6 + 8 7 8 8 + 8 9 ) 1 24 ( 7 1 4 2 + 1 3 ) = 1 3 ln 2 2 9 \begin{aligned} \ \ \ & = \frac 1{24} \left(\blue{\frac 11 - \frac 42 + \frac 63 - \frac 44 + \frac 15} + \red{\frac 13 - \frac 44 + \frac 65 - \frac 46 + \frac 17} + \blue{\frac 15 - \frac 46 + \frac 67 - \frac 48 + \frac 19} + \cdots \right) \\ & = \frac 1{24} \left(\frac 11 - \frac 42 + \frac 73 - \frac 84 + \frac 85 - \frac 86 + \frac 87 - \frac 88 + \frac 89 - \cdots \right) \\ & = \frac 1{24} \left(\frac 81 - \frac 82 + \frac 83 - \frac 84 + \frac 85 - \frac 86 + \frac 87 - \frac 88 + \frac 89 - \cdots \right) - \frac 1{24} \left(\frac 71 - \frac 42 + \frac 13 \right) \\ & = \frac 13 \ln 2 - \frac 29 \end{aligned}

Therefore 1 A + B = 1 1 3 2 9 = 9 \dfrac 1{A+B} = \dfrac 1{\frac 13-\frac 29} = \boxed 9 .

Guilherme Niedu
Sep 18, 2020

S = n = 0 ( 2 n ) ! ( 2 n + 5 ) ! \large \displaystyle S = \sum_{n=0}^{\infty} \frac{ (2n)!}{(2n+5)!}

S = n = 0 ( 2 n ) ! ( 2 n ) ! ( 2 n + 1 ) ( 2 n + 2 ) ( 2 n + 3 ) ( 2 n + 4 ) ( 2 n + 5 ) \large \displaystyle S = \sum_{n=0}^{\infty} \frac{ (2n)!}{(2n)! \cdot (2n+1)(2n+2)(2n+3)(2n+4)(2n+5)}

S = n = 0 1 ( 2 n + 1 ) ( 2 n + 2 ) ( 2 n + 3 ) ( 2 n + 4 ) ( 2 n + 5 ) \large \displaystyle S = \sum_{n=0}^{\infty} \frac{ 1}{ (2n+1)(2n+2)(2n+3)(2n+4)(2n+5)}

By partial fractions:

S = 1 24 [ n = 0 1 2 n + 1 4 2 n + 2 + n = 0 6 2 n + 3 4 2 n + 4 + n = 0 1 2 n + 5 ] \large \displaystyle S = \frac{1}{24} \left [ \sum_{n=0}^{\infty} \frac{1}{2n+1} - \frac{4}{2n+2} + \sum_{n=0}^{\infty} \frac{6}{2n+3} - \frac{4}{2n+4} + \sum_{n=0}^{\infty} \frac{1}{2n+5} \right ]

On second sum, make k = n + 1 k = n+1 . On third sum, make l = n + 2 l = n+2 :

S = 1 24 [ n = 0 1 2 n + 1 4 2 n + 2 + k = 1 6 2 k + 1 4 2 k + 2 + l = 2 1 2 l + 1 ] \large \displaystyle S = \frac{1}{24} \left [ \sum_{n=0}^{\infty} \frac{1}{2n+1} - \frac{4}{2n+2} + \sum_{k=1}^{\infty} \frac{6}{2k+1} - \frac{4}{2k+2} + \sum_{l=2}^{\infty} \frac{1}{2l+1} \right ]

Taking off the first two terms of the first sum, the first term of the second sum, and standardizing the variable for all sums as n n :

S = 1 24 [ 1 2 + 1 3 1 + n = 2 1 2 n + 1 4 2 n + 2 + 2 1 + n = 2 6 2 n + 1 4 2 n + 2 + n = 2 1 2 n + 1 ] \large \displaystyle S = \frac{1}{24} \left [ 1 - 2 + \frac13 - 1 + \sum_{n=2}^{\infty} \frac{1}{2n+1} - \frac{4}{2n+2} + 2 - 1 + \sum_{n=2}^{\infty} \frac{6}{2n+1} - \frac{4}{2n+2} + \sum_{n=2}^{\infty} \frac{1}{2n+1} \right ]

S = 1 24 [ 2 3 + n = 2 8 2 n + 1 8 2 n + 2 ] \large \displaystyle S = \frac{1}{24} \left [ -\frac23 + \sum_{n=2}^{\infty} \frac{8}{2n+1} - \frac{8}{2n+2} \right ]

S = 1 24 [ 2 3 + 8 n = 5 ( 1 ) n + 1 n ] \large \displaystyle S = \frac{1}{24} \left [ -\frac23 + 8\sum_{n=5}^{\infty} \frac{ (-1)^{n+1}}{n} \right ]

S = 1 24 [ 2 3 + 8 ( n = 5 ( 1 ) n + 1 n + 1 1 2 + 1 3 1 4 1 + 1 2 1 3 + 1 4 ) ] \large \displaystyle S = \frac{1}{24} \left [ -\frac23 + 8 \left (\sum_{n=5}^{\infty} \frac{ (-1)^{n+1}}{n} \color{#3D99F6} + 1 - \frac12 + \frac13 - \frac 14 \color{#D61F06} - 1 + \frac12 - \frac 13 + \frac 14 \color{#333333} \right ) \right ]

S = 1 24 [ 2 3 + 8 ( n = 1 ( 1 ) n + 1 n 1 + 1 2 1 3 + 1 4 ) ] \large \displaystyle S = \frac{1}{24} \left [ -\frac23 + 8 \left ( \sum_{ \color{#3D99F6}n=1}^{\color{#333333}\infty} \frac{ (-1)^{n+1}}{n} \color{#D61F06} - 1 + \frac12 - \frac 13 + \frac 14 \color{#333333} \right ) \right ]

S = 1 24 [ 2 3 + 8 ( n = 1 ( 1 ) n + 1 n ) 14 3 ] \large \displaystyle S = \frac{1}{24} \left [ -\frac23 + 8 \left ( \sum_{n=1}^{\infty} \frac{ (-1)^{n+1}}{n} \right ) - \frac{14}{3} \right ]

S = 1 24 [ 8 ( n = 1 ( 1 ) n + 1 n ) 16 3 ] \large \displaystyle S = \frac{1}{24} \left [ 8 \left ( \sum_{n=1}^{\infty} \frac{ (-1)^{n+1}}{n} \right ) -\frac{16}{3} \right ]

S = 1 3 ( n = 1 ( 1 ) n + 1 n ) 2 9 \large \displaystyle S = \frac{1}{3} \left ( \sum_{n=1}^{\infty} \frac{ (-1)^{n+1}}{n} \right ) - \frac{2}{9}

From Maclaurin Series of ln ( 1 + x ) , x 1 , x 1 \ln(1+x) , |x| \leq 1, x \neq -1 :

S = 1 3 ln ( 2 ) 2 9 \color{#20A900} \boxed{ \large \displaystyle S = \frac{1}{3} \ln(2)- \frac{2}{9}}

So:

A = 1 3 , B = 2 9 1 A + B = 9 \color{#3D99F6} \large \displaystyle A = \frac13, B = - \frac29 \rightarrow \boxed{\large \displaystyle \frac{1}{A+B} = 9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...