FACTORIAL-CUBES !

Algebra Level 3

If X = 2014! , Y = 2015! , Z = 1/2015! find the value of

( x + y + z ) 3 ( x + y z ) 3 ( y + z x ) 3 ( z + x y ) 3 23 x y z 2013 ! \frac { { \left( x+y+z \right) }^{ 3 }-{ \left( x+y-z \right) }^{ 3 }-{ \left( y+z-x \right) }^{ 3 }-{ \left( z+x-y \right) }^{ 3 }-23xyz }{ 2013! }

HINT : Assume a + b = 2y , b + c = 2z , c + a = 2x and a+b+c = x+y+z.


The answer is 2014.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

HariShankar Pv
May 12, 2014

This is based on the Identity ( a + b + c ) 3 = a 3 + b 3 + c 3 3 ( a + b ) ( b + c ) ( c + a ) { \left( a+b+c \right) }^{ 3 }\quad =\quad { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }-3\left( a+b \right) \left( b+c \right) \left( c+a \right) ,In the given equation ( x + y + z ) 3 ( x + y z ) 3 ( y + z x ) 3 ( z + x y ) 3 23 x y z 2013 ! \frac { { \left( x+y+z \right) }^{ 3 }-{ \left( x+y-z \right) }^{ 3 }-{ \left( y+z-x \right) }^{ 3 }-{ \left( z+x-y \right) }^{ 3 }-23xyz }{ 2013! }

Let x+y-z = a, y+z-x = b, z+x-y = c

\Rightarrow a+b+c = x+y+z and a+b = 2y, b+c = 2z, c+a = 2x.

Given expression

= ( a + b + c ) 3 a 3 b 3 c 3 23 x y z / 2013 ! = ( a + b + c ) 3 a 3 b 3 c 3 24 x y z + x y z / 2013 ! = ( a + b + c ) 3 a 3 b 3 c 3 3 ( a + b ) ( b + c ) ( c + a ) + x y z / 2013 ! = 0 + x y z / 2013 ! = 2014 ! × 2015 ! × 1 2015 ! / 2013 ! 2014 ! 2013 ! = 2014. ={ \left( a+b+c \right) }^{ 3 }-{ a }^{ 3 }-{ b }^{ 3 }-{ c }^{ 3 }-23xyz\quad /2013!\\ ={ \left( a+b+c \right) }^{ 3 }-{ a }^{ 3 }-{ b }^{ 3 }-{ c }^{ 3 }-24xyz\quad +\quad xyz\quad /2013!\\ ={ \left( a+b+c \right) }^{ 3 }-{ a }^{ 3 }-{ b }^{ 3 }-{ c }^{ 3 }-3\left( a+b \right) \left( b+c \right) \left( c+a \right) \quad +\quad xyz\quad /2013!\\ =0\quad +\quad xyz\quad /2013!\quad =\quad 2014!\times 2015!\times \frac { 1 }{ 2015! } \quad /2013!\\ \Rightarrow \frac { 2014! }{ 2013! } \quad =\quad 2014.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...