Factorial Fire

Algebra Level 3

1 2 ! 17 ! + 1 3 ! 16 ! + 1 4 ! 15 ! + 1 5 ! 14 ! + 1 6 ! 13 ! + 1 7 ! 12 ! + 1 8 ! 11 ! + 1 9 ! 10 ! = 2 a b c ! \displaystyle \frac{1}{2! 17!} + \frac{1}{3! 16!} + \frac{1}{4! 15!} + \frac{1}{5! 14!} + \frac{1}{6! 13!} + \frac{1}{7! 12!} + \frac{1}{8! 11!} + \frac{1}{9! 10!} = \frac{2^a - b}{c!}

If the above equation holds true for positive integers a a , b b , and c c , find a + b + c a + b + c .

Notation: ! ! denotes the factorial notation. For example, 3 ! = 3 × 2 × 1 3! = 3 \times 2 \times 1 .


The answer is 57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 10, 2017

Let S = 1 2 ! 17 ! + 1 3 ! 16 ! + 1 4 ! 15 ! + + 1 9 ! 10 ! = k = 2 9 1 k ! ( 19 k ) ! \displaystyle S = \dfrac 1{2!17!} + \dfrac 1{3!16!} + \dfrac 1{4!15!} + \cdots + \dfrac 1{9!10!} = \sum_{k=2}^9 \frac 1{k!(19-k)!} . Then let us consider:

( 1 + x ) 19 = 1 + 19 x + 19 ! 2 ! 17 ! x 2 + 19 ! 3 ! 16 ! x 3 + + 19 ! 9 ! 10 ! x 9 + 19 ! 10 ! 9 ! x 10 + + 19 ! 16 ! 3 ! x 16 + 19 ! 17 ! 2 ! x 17 + + 19 x 18 + x 19 2 19 = 1 + 19 + 19 ! 2 ! 17 ! + 19 ! 3 ! 16 ! + + 19 ! 9 ! 10 ! + 19 ! 10 ! 9 ! + + 19 ! 16 ! 3 ! + 19 ! 17 ! 2 ! + + 19 + 1 Putting x = 1 2 19 = 40 + 2 ( 19 ! ) k = 2 9 1 k ! ( 19 k ) ! 2 19 = 40 + 2 ( 19 ! ) S S = 2 19 40 2 ( 19 ! ) = 2 18 20 19 ! \begin{aligned} (1+x)^{19} & = \small 1 + 19x + \frac {19!}{2!17!}x^2 + \frac {19!}{3!16!}x^3 + \cdots + \frac {19!}{9!10!}x^9 + \frac {19!}{10!9!}x^{10} + \cdots + \frac {19!}{16!3!}x^{16} + \frac {19!}{17!2!}x^{17} + \cdots + 19x^{18} + x^{19} \\ 2^{19} & = \small 1 + 19 + \frac {19!}{2!17!} + \frac {19!}{3!16!} + \cdots + \frac {19!}{9!10!} + \frac {19!}{10!9!} + \cdots + \frac {19!}{16!3!} + \frac {19!}{17!2!} + \cdots + 19 + 1 \quad \quad \color{#3D99F6} \text{Putting }x=1 \\ 2^{19} & = 40 + 2(19!) \sum_{k=2}^9 \frac 1{k!(19-k)!} \\ 2^{19} & = 40 + 2(19!)S \\ \implies S & = \frac {2^{19}-40}{2(19!)} = \frac {2^{18}-20}{19!} \end{aligned}

a + b + c = 18 + 20 + 19 = 57 \implies a+b+c = 18+20+19 = \boxed{57}

Marco Brezzi
Aug 10, 2017

Relevant Wiki: Pascal's Triangle

We have to find S = n = 2 9 1 n ! ( 19 n ) ! S=\displaystyle\sum_{n=2}^9 \dfrac{1}{n!(19-n)!}

Let's first consider

n = 0 19 19 ! n ! ( 19 n ) ! = 2 19 \displaystyle\sum_{n=0}^{19} \dfrac{19!}{n!(19-n)!}=2^{19}

Since Pascal's triangle is symmetrical

n = 0 9 19 ! n ! ( 19 n ) ! = 2 18 \displaystyle\sum_{n=0}^{9} \dfrac{19!}{n!(19-n)!}=2^{18}

Manipulating this formula

n = 0 9 1 n ! ( 19 n ) ! = 2 18 19 ! 1 19 ! + 1 18 ! + n = 2 9 1 n ! ( 19 n ) ! = 2 18 19 ! S = 2 18 19 ! 1 19 ! 19 19 ! S = 2 18 20 19 ! = 2 a b c ! a + b + c = 18 + 20 + 19 = 57 \begin{aligned} & \sum_{n=0}^{9} \dfrac{1}{n!(19-n)!}=\dfrac{2^{18}}{19!}\\ \Longrightarrow & \dfrac{1}{19!}+\dfrac{1}{18!} +\mathbin{\color{#D61F06} \sum_{n=2}^{9} \dfrac{1}{n!(19-n)!}}=\dfrac{2^{18}}{19!}\\ \Longrightarrow & \mathbin{\color{#D61F06} S}=\dfrac{2^{18}}{19!}-\dfrac{1}{19!}-\dfrac{19}{19!}\\ \Longrightarrow & S = \dfrac{2^{18}-20}{19!}=\dfrac{2^a-b}{c!}\\ \Longrightarrow & a+b+c=18+20+19=\boxed{57} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...