Evaluate the factorial What is the value (exponent of the exponent)? Specifies the result with an accuracy of 2 decimal places.
Hint: You can use Stirling's formula Beware of exponential overflow errors!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
To solve this task you need the rules of calculation for the logarithm: lo g ( exp ( x ) ) lo g ( x ⋅ y ) lo g ( x a ) lo g a ( x ) = x = lo g ( x ) + lo g ( y ) = a lo g ( x ) = lo g ( a ) lo g ( x ) By logarithmising the Stirling formula it translates into a usable form, that does not cause any overflow errors in the computation: N ! lo g ( N ! ) lo g ( 1 0 2 3 ! ) lo g 1 0 ( 1 0 2 3 ! ) = lo g ( 1 0 ) lo g ( 1 0 2 3 ! ) X = lo g 1 0 ( lo g 1 0 ( 1 0 2 3 ! ) ) ≈ N N e − N 2 π N ≈ lo g ( N N ) + lo g ( e − N ) + lo g ( N ) + lo g ( 2 π ) = N lo g ( N ) − N + 2 1 lo g ( N ) + lo g ( 2 π ) ≈ 2 3 ⋅ 1 0 2 3 lo g ( 1 0 ) − 1 0 2 3 + 1 1 . 5 lo g ( 1 0 ) + lo g ( 2 π ) ≈ 2 3 ⋅ 1 0 2 3 lo g ( 1 0 ) − 1 0 2 3 + O ( 1 0 ) ≈ 1 0 2 3 ( 2 3 − lo g ( 1 0 ) 1 ) ≈ 2 3 + lo g ( 1 0 ) 1 lo g ( 2 3 − lo g ( 1 0 ) 1 ) ≈ 2 4 . 3 5
P.S.: I just had to realize, that Wolfram Alpha delivers the finished solution directly, if you only type "(10^23)!" in the command line. That makes me a little sad.