Factorial says 'Happy New Year'

Find approximate value of 2020 ! + 2017 ! 2019 ! + 2018 ! \dfrac{2020!+2017!}{2019!+2018!} .

Notation: ! ! denotes the factorial notion . For example: 8 ! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 8! = 1\times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 .

2018 2020 2019 2017

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

2020 ! + 2017 ! 2019 ! + 2018 ! = 2017 ! ( 2020 2019 2018 + 1 ) 2018 ! ( 2019 + 1 ) = 2020 2019 2018 + 1 2018 2020 = 2019 + 1 2018 2020 2019 \begin{aligned} \frac {2020!+2017!}{2019!+2018!} & = \frac {2017!(2020 \cdot 2019 \cdot 2018 +1)}{2018!(2019+1)} \\ & = \frac {2020 \cdot 2019 \cdot 2018 +1}{2018\cdot 2020} \\ & = 2019 + \frac 1{2018 \cdot 2020} \\ & \approx \boxed{2019} \end{aligned}

Jahangir Hossain
Jan 1, 2019

given,

2020 ! + 2017 ! 2019 ! + 2018 ! \space \space \space \space \frac{2020!+2017!}{2019!+2018!}

= ( 2020 × 2019 × 2018 × 2017 ! ) + 2017 ! ( 2019 × 2018 × 2017 ! ) + ( 2018 × 2017 ! ) [ u s i n g n ! = n × ( n 1 ) ! ] =\frac{(2020 \times 2019 \times 2018 \times 2017!)+2017!}{(2019 \times 2018 \times 2017!)+(2018 \times 2017!)} \space \space [ \space \space using \space \space n!=n \times (n-1)! \space \space]

= 2017 ! ( 2020 × 2019 × 2018 + 1 ) 2017 ! ( 2019 × 2018 + 2018 ) =\frac{2017!(2020 \times 2019 \times 2018 +1)}{2017!(2019 \times 2018+2018)}

= ( 2020 × 2019 × 2018 ) + 1 ( 2019 × 2018 ) + 2018 =\frac{(2020 \times 2019 \times 2018) +1}{(2019 \times 2018)+2018}

= 8230170841 4076360 =\frac{8230170841}{4076360}

= 2019 =\boxed{2019}

How did you cancel out in the last step?

Henry U - 2 years, 5 months ago

Log in to reply

After cutting off 2017!, I used a calculator to get the value 😫

Jahangir Hossain - 2 years, 5 months ago

Log in to reply

You can factor out 2018 in the denominator and then cancel out

2020 2019 2018 + 1 2019 2018 + 2018 = 2020 2019 2018 + 1 2018 2020 = 2020 2019 2018 2018 1020 + 1 2018 2020 = 2019 + 1 2018 2020 \begin{aligned} & \frac {2020\cdot 2019\cdot 2018+1}{2019\cdot 2018+2018} \\ & = \frac {2020\cdot 2019\cdot 2018+1}{2018\cdot 2020} \\ & =\frac{2020\cdot 2019\cdot 2018}{2018\cdot 1020}+\frac{1}{2018\cdot 2020} \\ & = 2019+\frac{1}{2018\cdot 2020} \end{aligned}

Henry U - 2 years, 5 months ago

thanks sir.

Jahangir Hossain - 2 years, 5 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...