Factorial Series

Calculus Level 3

1 ! 4 ! + 2 ! 5 ! + 3 ! 6 ! + 4 ! 7 ! + \large\dfrac{1!}{4!}+\dfrac{2!}{5!}+\dfrac{3!}{6!}+\dfrac{4!}{7!}+\cdots

If the value of the above series can be expressed to a b \dfrac{a}{b} when a a and b b are coprime positive integers. Find the value of a + b a+b .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Jun 13, 2015

The given series can be written as

n = 1 n ! ( n + 3 ) ! \large{\displaystyle \sum^{\infty}_{n=1} \frac{n!}{(n+3)!}}

n = 1 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) \large{\displaystyle \sum^{\infty}_{n=1} \frac{1}{(n+1)(n+2)(n+3)}}

1 2 n = 1 1 ( n + 1 ) ( n + 2 ) 1 ( n + 2 ) ( n + 3 ) \large{\frac{1}{2} \displaystyle \sum^{\infty}_{n=1} \frac{1}{(n+1)(n+2)}-\frac{1}{(n+2)(n+3)}}

Its a telescopic series

On solving we get

1 12 \huge{\boxed{ \frac{1}{12}}}

Moderator note:

Careful there, you should put parenthesis!

Yes, telescoping series is the key to this problem.

Noel Lo
Jun 15, 2015

We get 1 2 3 4 + 1 3 4 5 + 1 4 5 6 + . . . \frac{1}{2*3*4} + \frac{1}{3*4*5} + \frac{1}{4*5*6} + ...

= 1 2 2 1 3 + 1 2 4 = \frac{1}{2*2} - \frac{1}{3} + \frac{1}{2*4}

+ 1 2 3 1 4 + 1 2 5 +\frac{1}{2*3} - \frac{1}{4} + \frac{1}{2*5}

+ 1 2 4 1 5 + 1 2 6 + . . . +\frac{1}{2*4} - \frac{1}{5} + \frac{1}{2*6} + ...

= 1 2 2 1 3 + 1 2 3 = 1 4 1 3 + 1 6 = 1 12 = \frac{1}{2*2} - \frac{1}{3} + \frac{1}{2*3} = \frac{1}{4} - \frac{1}{3}+\frac{1}{6} = \frac{1}{12}

a + b = 1 + 12 = 13 a+b = 1+12 = \boxed{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...