Factorial Sum

Algebra Level 3

3 ! + 4 ! 2 ( 1 ! + 2 ! ) + 4 ! + 5 ! 3 ( 2 ! + 3 ! ) + + 102 ! + 103 ! 101 ( 100 ! + 101 ! ) = ? \frac{3!+4!}{2(1!+2!)}+\frac{4!+5!}{3(2!+3!)}+\ldots+\frac{102!+103!}{101(100!+101!)} = \ ?


The answer is 5450.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Victor Loh
Mar 8, 2015

Let S = 3 ! + 4 ! 2 ( 1 ! + 2 ! ) + 4 ! + 5 ! 3 ( 2 ! + 3 ! ) + + 102 ! + 103 ! 101 ( 100 ! + 101 ! ) S=\frac{3!+4!}{2(1!+2!)}+\frac{4!+5!}{3(2!+3!)}+\ldots+\frac{102!+103!}{101(100!+101!)} . Note that

( n + 2 ) ! + ( n + 3 ) ! ( n + 1 ) ( n ! + ( n + 1 ) ! ) = ( n + 2 ) ! ( n + 4 ) ( n + 1 ) n ! ( n + 2 ) = n + 4. \frac{(n+2)!+(n+3)!}{(n+1)(n!+(n+1)!)}=\frac{(n+2)!(n+4)}{(n+1)n!(n+2)}=n+4.

Therefore,

S = n = 1 100 ( n + 4 ) = 5450 . S=\sum_{n=1}^{100}(n+4)=\boxed{5450}.

Ankit Nigam
Mar 9, 2015

if you observe the series than we can rewrite it as

3 + 3 × 4 3 \frac { 3+3\times 4 }{ 3 } + 4 + 4 × 5 5 \frac { 4+4\times 5 }{ 5 } +.......... 102 + 102 × 103 102 \frac { 102+102\times 103 }{ 102 }

therefore in general we can write it as n + ( n ) ( n + 1 ) n \frac { n+(n)(n+1) }{ n }

\therefore n = 3 n = 102 n + n ( n + 1 ) n \sum \limits^{n=102}_{n=3}\frac{n+n(n+1)}{n}

\therefore n = 3 n = 102 ( n + 2 ) \sum \limits^{n=102}_{n=3}(n+2)

which is equal to 5250 + 200

= 5450 \boxed { 5450 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...