Factorial sum!

Algebra Level 4

ζ = r = 1 2016 r 2 r 1 ( r + 1 ) ! \large \zeta = \sum_{r=1}^{2016} \dfrac{r^2-r-1}{(r+1)!}

If ζ \zeta can be expressed as 1 a ( b ! ) -\dfrac1{a(b!)} , where a a and b b are positive integers, find a + b a+b .

Notation :

! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 4032.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
May 1, 2016

ζ = r = 1 2016 ( r 2 1 ( r 1 ) ( r + 1 ) r ( r + 1 ) ! ) = r = 1 2016 ( ( r 1 ) ( r + 1 ) ( r + 1 ) r ! r ( r + 1 ) ! ) = r = 1 2016 ( r 1 r ! r ( r + 1 ) ! ) ( A T e l e s c o p i c S e r i e s ) = 0 2016 2017 ! = 1 2017 ( 2015 ! ) \large{\begin{aligned}\zeta=&\displaystyle\sum_{r=1}^{2016}\left(\dfrac{\overbrace{r^2-1}^{(r-1)(r+1)}-r}{(r+1)!}\right)\\=& \displaystyle\sum_{r=1}^{2016}\left(\dfrac{(r-1)\cancel{(r+1)}}{\cancel{(r+1)}r!}-\dfrac{r}{(r+1)!}\right)\\=& \displaystyle\sum_{r=1}^{2016}\left(\dfrac{r-1}{r!}-\dfrac{r}{(r+1)!}\right)\\&\\&\mathbf{(A~Telescopic~Series)}\\&\\=&0-\dfrac{2016}{2017!}=\dfrac{-1}{2017(2015!)}\end{aligned}}

2015 + 2017 = 4032 \Large 2015+2017=\boxed{\huge 4032}

A simple yet elegant solution! (+1)

Aditya Dhawan - 5 years, 1 month ago

Log in to reply

Thanks.... ¨ \ddot\smile

Rishabh Jain - 5 years, 1 month ago
Aditya Dhawan
May 1, 2016

ζ = r = 1 2016 r 2 r 1 ( r + 1 ) ! = r = 1 n r ( r + 1 ) 2 r 1 ( r + 1 ) ! = = r = 1 n 1 ( r 1 ) ! 2 r ( r + 1 ) ! 1 ( r + 1 ) ! = r = 1 n 1 ( r 1 ) ! 1 ( r + 1 ) ! 2 r = 1 n r ( r + 1 ) ! N o w , r = 1 n r ( r + 1 ) ! = ( r + 1 ) 1 ( r + 1 ) ! = r = 1 n 1 r ! 1 ( r + 1 ) ! = 1 1 ( n + 1 ) ! ( T e l e s c o p i n g S e r i e s ) S i m i l a r l y , r = 1 n 1 ( r 1 ) ! 1 ( r + 1 ) ! = 2 1 n ! 1 ( n + 1 ) ! T h u s t h e c l o s e d f o r m i s : 1 n ! + 1 ( n + 1 ) ! = n ( n + 1 ) ! = 1 ( n 1 ) ( n + 1 ) ! ζ = 1 ( 2015 ) ( 2017 ! ) a = 2015 , b = 2017 a + b = 4032 \zeta =\sum _{ r=1 }^{ 2016 }{ \frac { { r }^{ 2 }-r-1 }{ (r+1)! } } \\ =\sum _{ r=1 }^{ n }{ \frac { r(r+1)-2r-1 }{ (r+1)! } } =\\ =\sum _{ r=1 }^{ n }{ \frac { 1 }{ (r-1)! } -\frac { 2r }{ (r+1)! } -\frac { 1 }{ (r+1)! } } \\ =\sum _{ r=1 }^{ n }{ \frac { 1 }{ (r-1)! } -\frac { 1 }{ (r+1)! } } -\quad 2\sum _{ r=1 }^{ n }{ \frac { r }{ (r+1)! } } \\ Now,\\ \sum _{ r=1 }^{ n }{ \frac { r }{ (r+1)! } } =\sum { \frac { (r+1)-1 }{ (r+1)! } } =\sum _{ r=1 }^{ n }{ \frac { 1 }{ r! } -\frac { 1 }{ (r+1)! } } =1-\frac { 1 }{ (n+1)! } \left( Telescoping\quad Series \right) \\ Similarly,\quad \\ \sum _{ r=1 }^{ n }{ \frac { 1 }{ (r-1)! } -\frac { 1 }{ (r+1)! } } =\quad 2-\frac { 1 }{ n! } -\frac { 1 }{ (n+1)! } \\ Thus\quad the\quad closed\quad form\quad is:\quad -\frac { 1 }{ n! } +\frac { 1 }{ (n+1)! } =\frac { -n }{ (n+1)! } =\frac { -1 }{ (n-1)(n+1)! } \\ \therefore \quad \zeta =\frac { -1 }{ (2015)(2017!) } \Longrightarrow \quad a=2015,b=2017\\ \therefore \quad \boxed { a+b=4032 } \quad \\

Moderator note:

Good recognition of the telescoping series.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...