ζ = r = 1 ∑ 2 0 1 6 ( r + 1 ) ! r 2 − r − 1
If ζ can be expressed as − a ( b ! ) 1 , where a and b are positive integers, find a + b .
Notation :
! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × ⋯ × 8 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A simple yet elegant solution! (+1)
ζ = ∑ r = 1 2 0 1 6 ( r + 1 ) ! r 2 − r − 1 = ∑ r = 1 n ( r + 1 ) ! r ( r + 1 ) − 2 r − 1 = = ∑ r = 1 n ( r − 1 ) ! 1 − ( r + 1 ) ! 2 r − ( r + 1 ) ! 1 = ∑ r = 1 n ( r − 1 ) ! 1 − ( r + 1 ) ! 1 − 2 ∑ r = 1 n ( r + 1 ) ! r N o w , ∑ r = 1 n ( r + 1 ) ! r = ∑ ( r + 1 ) ! ( r + 1 ) − 1 = ∑ r = 1 n r ! 1 − ( r + 1 ) ! 1 = 1 − ( n + 1 ) ! 1 ( T e l e s c o p i n g S e r i e s ) S i m i l a r l y , ∑ r = 1 n ( r − 1 ) ! 1 − ( r + 1 ) ! 1 = 2 − n ! 1 − ( n + 1 ) ! 1 T h u s t h e c l o s e d f o r m i s : − n ! 1 + ( n + 1 ) ! 1 = ( n + 1 ) ! − n = ( n − 1 ) ( n + 1 ) ! − 1 ∴ ζ = ( 2 0 1 5 ) ( 2 0 1 7 ! ) − 1 ⟹ a = 2 0 1 5 , b = 2 0 1 7 ∴ a + b = 4 0 3 2
Good recognition of the telescoping series.
Problem Loading...
Note Loading...
Set Loading...
ζ = = = = r = 1 ∑ 2 0 1 6 ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ ( r + 1 ) ! r 2 − 1 ( r − 1 ) ( r + 1 ) − r ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ r = 1 ∑ 2 0 1 6 ( ( r + 1 ) r ! ( r − 1 ) ( r + 1 ) − ( r + 1 ) ! r ) r = 1 ∑ 2 0 1 6 ( r ! r − 1 − ( r + 1 ) ! r ) ( A T e l e s c o p i c S e r i e s ) 0 − 2 0 1 7 ! 2 0 1 6 = 2 0 1 7 ( 2 0 1 5 ! ) − 1
2 0 1 5 + 2 0 1 7 = 4 0 3 2