n = 0 ∑ ∞ r = 0 ∑ ∞ k = 0 ∑ ∞ ( n + r + k + 2 ) ! n ! r ! k !
The above sum can be written as b π a for positive integers a and b . Evaluate a + b
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = a , b , c ∈ N ∑ β ( a , b , c ) = a , b , c ∈ N ∑ β ( a , b ) × β ( a + b , c )
= ∫ 0 1 ∫ 0 1 a , b , c ∈ N ∑ x a − 1 ( 1 − x ) b − 1 y a + b − 1 ( 1 − y ) c − 1 d x d y
= ∫ 0 1 ∫ 0 1 ( 1 − x y ) ( 1 + x y − y ) d x d y
A little simplification gives, S = − 2 ∫ 0 1 1 − y 2 ln y d y = − 2 n ≥ 0 ∑ ∫ 0 1 y 2 n ln y d y = 2 × n ≥ 0 ∑ ( 2 n + 1 ) 2 1 = 4 π 2
Note : β ( a , b , c ) = Γ ( a + b + c ) Γ ( a ) Γ ( b ) Γ ( c ) which is a Multivariate Beta function
Problem Loading...
Note Loading...
Set Loading...
To start with, k = 0 ∑ ∞ ( n + r + k + 2 ) ! k ! = ( n + r + 1 ) × ( n + r + 1 ) ! 1 n , r ≥ 0 , so that the required sum is S = n , r = 0 ∑ ∞ n + r + 1 1 × ( n + r + 1 ) ! n ! r ! = r , n = 0 ∑ ∞ n + r + 1 1 ∫ 0 1 x n ( 1 − x ) r d x Next we use the series identity r , n = 0 ∑ ∞ n + r + 1 x n ( 1 − x ) r = 1 − 2 x ln ( 1 − x ) − ln x 0 ≤ x ≤ 1 to deduce that S = ∫ 0 1 1 − 2 x ln ( 1 − x ) − ln x d x = 4 1 π 2 making the answer 2 + 4 = 6 .