Factorial Summation

Calculus Level 5

n = 0 r = 0 k = 0 n ! r ! k ! ( n + r + k + 2 ) ! \large \sum_{n=0}^\infty\sum_{r=0}^\infty\sum_{k=0}^\infty\dfrac{n!r!k!}{(n+r+k+2)!}

The above sum can be written as π a b \dfrac{\pi^a}{b} for positive integers a a and b b . Evaluate a + b a+b


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 18, 2016

To start with, k = 0 k ! ( n + r + k + 2 ) ! = 1 ( n + r + 1 ) × ( n + r + 1 ) ! n , r 0 , \sum_{k=0}^\infty \frac{k!}{(n+r+k+2)!} \; = \; \frac{1}{(n+r+1) \times (n+r+1)!} \hspace{2cm} n,r \ge 0 \;, so that the required sum is S = n , r = 0 1 n + r + 1 × n ! r ! ( n + r + 1 ) ! = r , n = 0 1 n + r + 1 0 1 x n ( 1 x ) r d x S \; = \; \sum_{n,r=0}^\infty \frac{1}{n+r+1} \times \frac{n! r!}{(n+r+1)!} \; = \; \sum_{r,n=0}^\infty \frac{1}{n+r+1} \int_0^1 x^n(1-x)^r\,dx Next we use the series identity r , n = 0 x n ( 1 x ) r n + r + 1 = ln ( 1 x ) ln x 1 2 x 0 x 1 \sum_{r,n=0}^\infty \frac{x^n (1-x)^r}{n+r+1} \; = \; \frac{\ln(1-x) - \ln x}{1-2x} \hspace{2cm} 0 \le x \le 1 to deduce that S = 0 1 ln ( 1 x ) ln x 1 2 x d x = 1 4 π 2 S \; = \; \int_0^1 \frac{\ln(1-x) - \ln x}{1-2x}\,dx \; = \; \tfrac14\pi^2 making the answer 2 + 4 = 6 2+4=\boxed{6} .

Same method!

A Former Brilliant Member - 4 years, 6 months ago

Very nicely done!

Calvin Lin Staff - 4 years, 6 months ago

S = a , b , c N β ( a , b , c ) = a , b , c N β ( a , b ) × β ( a + b , c ) \displaystyle S = \sum_{a,b,c\in\mathbb{N}} \beta(a,b,c) = \sum_{a,b,c\in\mathbb{N}} \beta(a,b)\times \beta(a+b,c)

= 0 1 0 1 a , b , c N x a 1 ( 1 x ) b 1 y a + b 1 ( 1 y ) c 1 d x d y \displaystyle = \int_{0}^{1}\int_{0}^{1}\sum_{a,b,c\in\mathbb{N}} x^{a-1}(1-x)^{b-1}y^{a+b-1}(1-y)^{c-1} \space dx\space dy

= 0 1 0 1 d x d y ( 1 x y ) ( 1 + x y y ) \displaystyle = \int_{0}^{1}\int_{0}^{1} \frac{dx\space dy}{(1-xy)(1+xy-y)}

A little simplification gives, S = 2 0 1 ln y 1 y 2 d y = 2 n 0 0 1 y 2 n ln y d y = 2 × n 0 1 ( 2 n + 1 ) 2 = π 2 4 \displaystyle S = -2\int_{0}^{1}\frac{\ln y}{1-y^2}dy = -2 \sum_{n\ge 0} \int_{0}^{1} y^{2n}\ln y \space dy = 2\times \sum_{n\ge 0} \frac{1}{(2n+1)^2} = \frac{\pi^2}{4}

Note : β ( a , b , c ) = Γ ( a ) Γ ( b ) Γ ( c ) Γ ( a + b + c ) \displaystyle \text{Note : } \beta(a,b,c)= \frac{\Gamma(a)\Gamma(b)\Gamma(c)}{\Gamma(a+b+c)} which is a Multivariate Beta function

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...