Factorials

Let n n be an positive integer such that

( n 2 + 1 ) ! ( n 2 1 ) ! = 10 n 2 \dfrac{(n^2 + 1)!}{(n^2 - 1)!} = 10n^{2} .

What's the value of n n ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zach Abueg
Jun 10, 2017

( n 2 + 1 ) ! ( n 2 1 ) ! = 10 n 2 ( n 2 + 1 ) ( n 2 ) ( n 2 1 ) ! ( n 2 1 ) ! = 10 n 2 ( n 2 + 1 ) ( n 2 ) = 10 n 2 n 2 + 1 = 10 n = ± 3 \displaystyle \begin{aligned} \frac{(n^2 + 1)!}{(n^2 - 1)!} & = 10n^2 \\ \frac {(n^2 + 1) \cdot (n^2) \cdot (n^2 - 1)!}{(n^2 - 1)!} & = 10n^2 \\ (n^2 + 1)(n^2) & = 10n^2 \\ n^2 + 1 & = 10 \\ n & = \pm 3 \end{aligned}

n > 0 n = 3 n > 0 \ \ \Longrightarrow \ \ \boxed{n = 3}

( n 2 + 1 ) ! ( n 2 1 ) ! = 10 n 2 ( n 2 1 ) ! ( n 2 ) ( n 2 + 1 ) ( n 2 1 ) ! = 10 n 2 n 2 ( n 2 + 1 ) = 10 n 2 n 2 + 1 = 10 n 2 = 9 n = 3 \large \frac { ({ n }^{ 2 }+1)! }{ ({ n }^{ 2 }-1)! } =10{ n }^{ 2 }\\ \frac { ({ n }^{ 2 }-1)!({ n }^{ 2 })({ n }^{ 2 }+1) }{ ({ n }^{ 2 }-1)! } =10{ n }^{ 2 }\\ { n }^{ 2 }({ n }^{ 2 }+1)=10{ n }^{ 2 }\\ { n }^{ 2 }+1=10\\ { n }^{ 2 }=9\\ n=3

Sswag SSwagf
Jun 10, 2017

let's make n 2 = m n^2 = m

So we end up with the follow eq

( m + 1 ) ! ( m 1 ) ! = 10 m \frac{(m + 1)!}{(m - 1)!} = 10m let's develop this:

( m + 1 ) ! = m ! ( m + 1 ) (m+1)! = m!(m+1)

( m 1 ) ! = m ! m (m-1)! = \frac{m!}{m}

m ! ( m + 1 ) m ! m = 10 m \frac{m!(m+1)}{ \frac{m!}{m}} = 10m developing this ugly equation we have

m 2 + m = 10 m m^2 + m = 10m

m 2 9 m = 0 m^2 - 9m = 0

now divide everything by m or solve the quadratic taking only the positive integer value

m = 9 m = 9

m = n = 3 \sqrt{m}=n=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...