Plus and Minus Makes All the Differences

Evaluate

( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) . \frac{(10!+9!)(8!+7!)(6!+5!)(4!+3!)(2!+1!)}{(10!-9!)(8!-7!)(6!-5!)(4!-3!)(2!-1!)} .

Hint : You don't need to multiply out all the factorials!


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Curtis Clement
Feb 19, 2015

Using the property that n ! = n ( n 1 ) ! n! = n(n-1)! , the expression becomes: 11 ( 9 ! ) 9 ( 9 ! ) × 9 ( 7 ! ) 7 ( 7 ! ) × 7 ( 5 ! ) 5 ( 5 ! ) × 5 ( 3 ! ) 3 ( 3 ! ) × 3 \frac{11(9!)}{9(9!)}\times\frac{9(7!)}{7(7!)}\times\frac{7(5!)}{5(5!)}\times\frac{5(3!)}{3(3!)}\times\ 3 Canceling out gives 11 9 × 9 7 × 7 5 × 5 3 × 3 = 11 \frac{11}{9}\times\frac{9}{7}\times\frac{7}{5}\times\frac{5}{3}\times\ 3 = \boxed{11}

I took the slightly circuitous route of factoring each of the terms into ( n 1 ) ! [ n + 1 ] (n-1)![n+1] and ( n 1 ) ! [ n 1 ] (n-1)![n-1] , then canceling.

Nathan Couch - 6 years, 3 months ago

Log in to reply

Help me with math

Tamesha Samule - 6 months, 1 week ago

Wow over 2200 attempts - I didn't expect this problem to be so popular :)

Curtis Clement - 6 years, 3 months ago

I am confused. According to your explanation that n!=n(n-1), how do you get 11(9!) from (10! - 9!)? What am I missing?

I simply factored out the smaller factorial from each parentheses (i.e. took out 9!, 7!, 5!, 3! from top and bottom), and added/subtracted what was left (i.e. (10! + 9!) became 9!(10+1)). Then did cancelling out, leaving me with 11.

Navid Ghatri - 5 years, 5 months ago

Log in to reply

11 (9!) is the result of 10!+9! since 10!=10×9! so (10×9!)+9! =11 (9!) 10!-9! = (10 (9!))-9! = 9 (9!) etc

Josh Noble - 5 years ago

Please check. n!=n(n-1) ! \Large \color{#D61F06}{!} ..... I have just now written the solution for you with little detail. Please see it. If any further question feel free to ask.

Niranjan Khanderia - 5 years, 5 months ago

Sorry, don't understand. Can you explain this in basic terms. I'm been staring at these solutions for about 2 days and don't understand

Simon Cochrane - 4 years, 4 months ago

Log in to reply

10! + 9! = 10(9!) + 9! = 11(9!)

10! - 9! = 10(9!) - 9! = 9(9!)

So (10! + 9!)/(10! - 9!) = 11/9.

In a similar fashion, we have that

(8! + 7!)/(8 - 7!) = 9/7

(6! + 5!)/(6! - 5!) = 7/5

(4! + 3!)/(4! - 3!) = 5/3

(2! + 1!)/(2! - 1!) = 3/1

Multiplying all of these together gives (11/9)(9/7)(7/5)(5/3)(3/1) = 11

Sarvagya Agrawal - 9 months, 3 weeks ago

10! + 9! = 10(9!) + 9! = 11(9!)

10! - 9! = 10(9!) - 9! = 9(9!)

So (10! + 9!)/(10! - 9!) = 11/9.

In a similar fashion, we have that

(8! + 7!)/(8 - 7!) = 9/7

(6! + 5!)/(6! - 5!) = 7/5

(4! + 3!)/(4! - 3!) = 5/3

(2! + 1!)/(2! - 1!) = 3/1

Multiplying all of these together gives (11/9)(9/7)(7/5)(5/3)(3/1) = 11

Sarvagya Agrawal - 9 months, 3 weeks ago

Great problem!

tytan le nguyen - 6 years, 3 months ago

Thanks for the solution!

Uddipan Pal - 6 years, 3 months ago

what does "!" mean ?

Nagma RKJ Pathan - 5 years, 7 months ago

Log in to reply

"!" stands for factorial(multiplication of all the natural numbers lesser than the number and the number itself)

saptarshi sinha - 5 years, 7 months ago

Log in to reply

Thanks for such a brilliant explanations :) :) ;)

Frankie Fook - 5 years, 7 months ago

Multiplication of continuous number.....example,if 1!=1 while 2!=1X2 while 3!=1X2X3....and so on

Frankie Fook - 5 years, 7 months ago

! = Factorial

Akhila Prasanna - 5 years, 4 months ago

! means factorial

Apar Thakur - 5 years, 4 months ago

Great problem!

Ahmed Nasr - 5 years, 7 months ago

where does the x3 come in?

Melissa Blagg - 5 years, 4 months ago

Log in to reply

(2!+1!)(2!-1!)=3

Niranjan Khanderia - 5 years, 4 months ago

It was a very nice question. Your solution procedure is the only way i think. Feeling happy to see my observation was perfect.

Sajal Chakroborty - 5 years, 3 months ago

;-; I'll keep trying.

Quest Underwood - 4 years, 9 months ago

Solved it the same way .

Subhra Patra - 4 years, 5 months ago

How do you get from 10! to 11(9!) using the property above I obtain :

10!= 10(10-1)! =

10(9)!

what am I doing wrong ?

Simon Cochrane - 4 years, 4 months ago

I don’t know this sum ,it’s too hard

Chitra G - 2 years, 3 months ago

It is one of the tricky questions.

The Spy Fardin - 7 months, 2 weeks ago

I did it the same way.

Niranjan Khanderia - 6 years, 3 months ago

I solved it in the same manner. Great solution.

Saaket Sharma - 6 years, 3 months ago
Gamal Sultan
Feb 24, 2015

10! + 9! = 10(9!) + 9! = 11(9!)

10! - 9! = 10(9!) - 9! = 9(9!)

So (10! + 9!)/(10! - 9!) = 11/9.

In a similar fashion, we have that

(8! + 7!)/(8 - 7!) = 9/7

(6! + 5!)/(6! - 5!) = 7/5

(4! + 3!)/(4! - 3!) = 5/3

(2! + 1!)/(2! - 1!) = 3/1

Multiplying all of these together gives (11/9)(9/7)(7/5)(5/3)(3/1) = 11

Thank you.

Gene Browning - 5 years, 1 month ago
Hugo Murilo
Feb 25, 2015

(10!+9!)/(10!-9!) = 9!(10+1)/9!(10-1) = (10+1)/(10-1)

Then:

(10+1)/(10-1) x (8+1)/(8-1) x (6+1)/(6-1) x (4+1)/(4-1) x (2+1)/(2-1) = 11

n ! = n { n 1 } ! ( 10 ! + 9 ! ) ( 8 ! + 7 ! ) . . . ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) . . . ( 2 ! 1 ! ) = ( 10 9 ! + 9 ! ) ( 8 7 ! + 7 ! ) . . . ( 2 1 ! + 1 ! ) ( 10 9 ! 9 ! ) ( 8 7 ! 7 ! ) . . . ( 2 1 ! 1 ) = 9 ! ( 10 + 1 ) 7 ! ( 8 + 1 ) . . . 1 ! ( 2 + 1 ) 9 ! ( 10 1 ) 7 ! ( 8 1 ) . . . 1 ! ( 2 1 ) = 9 ! ( 11 ) 7 ! ( 9 ) . . . 1 ! ( 3 ) 9 ! ( 9 ) 7 ! ( 7 ) . . . 1 ! ( 1 ) = 11 9... 3 9 7... 1 = 11 9 7 5 3 9 7 5 3 1 ( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) = 11. n! ~=~n*\{n-1\}!\\ ~~~\dfrac{(10!+9!) (8!+7!) . . .(2!+1!)}{ (10!-9!) (8!-7!) . . .(2!-1!)}\\ =\dfrac{(10*9!+9!) (8*7!+7!) . . .(2*1!+1!)}{ (10*9!-9!) (8*7!-7!) . . .(2*1! - 1)}\\ =\dfrac{9!(10+1)~*~ 7!*(8+1) . . .1!(2+1)}{ 9!(10-1)~*~ 7!*(8-1) . . .1!(2-1) }\\ =\dfrac{9!(11)~*~ 7!*(9) . . .1!*(3)}{ 9!(9)~*~ 7!*(7) . . .1!*(1)}\\ =\dfrac{11~*~9 . . . *3}{9~*~7 . . .*1 }\\ =\dfrac{11~*~9~*~7~*~5~*~ 3}{9~*~7~*~5~*~ 3~*~1}\\ \therefore \dfrac{(10!+9!)(8!+7!)(6!+5!)(4!+3!)(2!+1!)}{(10!-9!)(8!-7!)(6!-5!)(4!-3!)(2!-1!)}\\ =\Huge \color{#D61F06}{11}.\\ ~~\\ O R ~~~OR ( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) . 9 ! ( 10 + 1 ) 7 ! ( 8 + 1 ) 5 ! ( 6 + 1 ) 3 ! ( 4 + 1 ) 1 ! ( 2 + 1 ) 9 ! ( 10 1 ) 7 ! ( 8 1 ) 5 ! ( 6 + 1 ) 3 ! ( 4 + 1 ) 1 ! ( 2 1 ) 11 9 7 5 3 9 7 5 3 1 = 11 Note that 9!, 7!, 5!, 3!,1! cancel out. \dfrac{(10!+9!)(8!+7!)(6!+5!)(4!+3!)(2!+1!)}{(10!-9!)(8!-7!)(6!-5!)(4!-3!)(2!-1!)} .\\ \implies ~\dfrac{9!(10+1)7!(8+1)5!(6+1)3!(4+1)1!(2+1)}{9!(10-1)7!(8-1)5!(6+1)3!(4+1)1! (2-1)}\\ \implies ~\dfrac{11*9*7*5*3}{9*7*5*3*1}= \color{#D61F06}{11} \\ \text{Note that 9!, 7!, 5!, 3!,1! cancel out. }

Akash Patalwanshi
Apr 21, 2016

first note that!! ( n + 1 ) ! + n ! ( n + 1 ) ! n ! = n + 2 n \frac{(n+1)!+n!}{(n+1)! -n!} = \frac{n+2}{n} So given ratio simplifies to,

11 9 9 7 7 5 5 3 3 1 = 11 \frac{11}{9} \frac{9}{7} \frac{7}{5} \frac{5}{3} \frac{3}{1} =\boxed{11}

Pratyush Pushkar
May 13, 2015

10! + 9! = 10(9!) + 9! = 11(9!) 10! - 9! = 10(9!) - 9! = 9(9!) Then (10! + 9!)/(10! - 9!) = 11/9 By the same way (8! + 7!)/(8 - 7!) = 9/7 (6! + 5!)/(6! - 5!) = 7/5 (4! + 3!)/(4! - 3!) = 5/3 (2! + 1!)/(2! - 1!) = 3/1 The value = (11/9)(9/7)(7/5)(5/3)(3/1) = 11

I did it a different way.

n ! + ( n 1 ) ! n ! ( n 1 ) ! = n + 1 n 1 \frac {n! + (n - 1)!}{n! - (n - 1)!} = \frac {n + 1}{n - 1}

So the problem becomes:

11 × 9 × 7 × 5 × 3 9 × 7 × 5 × 3 × 1 \frac {11 \times 9 \times 7 \times 5 \times 3}{9 \times 7\times 5 \times 3 \times 1}

Most of the terms cancel out and you're left with the greatest n + 1 (ie 10 + 1 or 11).

Carried on, this sequence generates successive odd numbers.

K T
Feb 15, 2019

10 ! + 9 ! 10 ! 9 ! = 9 ! ( 10 + 1 ) 9 ! ( 10 1 ) = 11 9 \frac{10!+9!}{10!-9!}=\frac{9!(10+1)}{9!(10-1)}= \frac{11}{9} Doing this for all factors, we get 11 × 9 × 7 × 5 × 3 9 × 7 × 5 × 3 × 1 = 11 \frac{11×9×7×5×3}{9×7×5×3×1}=\boxed{11}

Setu Doshi
Jul 7, 2017

Use recursive relation: n!=(n-1)! * n

Prokash Shakkhar
Jan 8, 2017

( 10 ! + 9 ! ) ( 8 ! + 7 ! ) ( 6 ! + 5 ! ) ( 4 ! + 3 ! ) ( 2 ! + 1 ! ) ( 10 ! 9 ! ) ( 8 ! 7 ! ) ( 6 ! 5 ! ) ( 4 ! 3 ! ) ( 2 ! 1 ! ) \frac{(10!+9!)(8!+7!)(6!+5!)(4!+3!)(2!+1!)}{(10!-9!)(8!-7!)(6!-5!)(4!-3!)(2!-1!)}

( 11 9 ! ) ( 9 7 ! ) ( 7 5 ! ) ( 5 3 ! ) ( 3 1 ! ) ( 9 9 ! ) ( 7 7 ! ) ( 5 5 ! ) ( 3 3 ! ) ( 1 1 ! ) \frac{(11*9!)(9*7!)(7*5!)(5*3!)(3*1!)}{(9*9!)(7*7!)(5*5!)(3*3!)(1*1!)}\;

\Rightarrow \boxed{\color\red{11}}

Taking common factor of the binomials of each pair

9!(10+1) 7!(8+1) 5!(6+1) 3!(4+1) 1!(2+1)


9!(10-1) 7!(8-1) 5!(6-1) 3!(4-1) 1!(2-1)

Cancelling the binomials from up and down,remains 11

Hence, Answer = 11

Arjun Manoj
Mar 4, 2015

Too many jumps. How do you get from (10!+9!) to 11(9!) using the property ?

Simon Cochrane - 4 years, 4 months ago

if n! moved then it could be like this: n!+-5-1=-4. But if n! was with 1! then
there's nothing not even 1!.

Am Kemplin - 1 month, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...