Factorials at infinity

Calculus Level 4

lim n [ ( 2 n n ) 1 / n + ( ( 3 n ) ! ( n ! ) 3 ) 1 / n ] = ? \lim_{n \to \infty} \left [ { { \left( \begin{matrix} 2n \\ n \end{matrix} \right) }^{ 1/n } }+ { { \left( \frac { (3n)! }{ { (n!) }^{ 3 } } \right) }^{ 1/n } } \right ] = \ ?

Bonus : Find the general form for ( ( m n ) ! ( n ! ) m ) 1 / n \displaystyle { { \left( \frac { (m n)! }{ { (n!) }^{ m } } \right) }^{ 1/n } } for positive integer m m .

Details and Assumptions :

  • ( a b ) { { \left( \begin{matrix} a \\ b \end{matrix} \right) }} denote the binomial coefficient.


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kunal Gupta
Apr 7, 2015

We Can Also use Stirling's Approximation, i.e. n ! 2 π n ( n e ) n n! \approx \sqrt{2\pi n} \left( \dfrac{n}{e} \right)^{n} to make it easier

Let l(m)= lim n ( ( m n ) ! n ! m ) 1 n \lim _{ n\rightarrow \infty }{ { (\frac { (mn)! }{ { n! }^{ m } } })^{ \frac { 1 }{ n } } }

Divide numerator and denominator by n^(mn) and take log on both sides to obtain,

log l(m)= lim n 1 n ( r = 1 m n log r n m r = 1 n log r n ) \lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } \left( \sum _{ r=1 }^{ mn }{ \log { \frac { r }{ n } } } -m\sum _{ r=1 }^{ n }{ \log { \frac { r }{ n } } } \right) }

We can write this as log l(m)= 0 m log ( x ) d x m 0 1 log ( x ) d x \int _{ 0 }^{ m }{ \log { (x)dx\quad -\quad m } } \int _{ 0 }^{ 1 }{ \log { (x)dx } }

After evaluating this integral,

log l=m log m

so l= m m { m }^{ m }

required ans=l(2)+l(3) =2^2+3^3=31

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...