Factorials Fun

Calculus Level 3

1 3 ! + 2 5 ! + 3 7 ! + 4 9 ! + = ? \large \dfrac { 1 }{ 3! } +\dfrac { 2 }{ 5! } +\dfrac { 3 }{ 7! } +\dfrac { 4 }{ 9! } +\cdots = \, ?

1 2 \frac 12 1 2 e \frac 1{2e} 1 3 e \frac 1{3e} 1 1 1 e \frac 1e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 24, 2016

Consider the following,

e 1 = 1 1 1 ! + 1 2 ! 1 3 ! + 1 4 ! 1 5 ! + 1 6 ! 1 7 ! + 1 8 ! 1 9 ! + . . . 1 e = 0 + 2 3 ! + 4 5 ! + 6 7 ! + 8 9 ! + . . . 1 2 e = 1 3 ! + 2 5 ! + 3 7 ! + 4 9 ! + . . . \begin{aligned} e^{-1} & = \color{#3D99F6}{1 - \frac 1{1!}} + \color{#D61F06}{\frac 1{2!} - \frac 1{3!}} + \color{#3D99F6}{\frac 1{4!} - \frac 1{5!}} + \color{#D61F06}{\frac 1{6!} - \frac 1{7!}} + \color{#3D99F6}{\frac 1{8!} - \frac 1{9!}} +... \\ \frac 1e & = \color{#3D99F6}{0} + \color{#D61F06}{\frac 2{3!}} + \color{#3D99F6}{\frac 4{5!}} + \color{#D61F06}{\frac 6{7!}} + \color{#3D99F6}{\frac 8{9!}} +... \\ \implies \boxed{\dfrac 1{2e}} & = \frac 1{3!} + \frac 2{5!} + \frac 3{7!} + \frac 4{9!} +... \end{aligned}

Is this from the Taylor series expansion of e^x, where -1 is substituted?

John Frank - 4 years, 8 months ago

Log in to reply

Yes. e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + . . . e^x = 1 + x + \dfrac {x^2}{2!} + \dfrac {x^3}{3!} + \dfrac {x^4}{4!} + ... . Substituting x = 1 x=-1 , we get: e 1 = 1 1 + 1 2 ! 1 3 ! + 1 4 ! + . . . e^{-1} = 1 -1 + \dfrac 1{2!} - \dfrac 1{3!} + \dfrac 1{4!} + ... .

Chew-Seong Cheong - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...