Let α , β , γ and φ be real numbers such that:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ α = 1 + 2 0 1 8 2 0 0 1 ! − 2 0 0 0 ! + 2 0 1 8 2 0 0 1 ! − 1 9 9 9 ! + 2 0 1 8 2 0 0 1 ! − 1 9 9 8 ! x 3 − 5 ⌊ x ⌋ + x − 5 β = 1 + 2 0 1 8 2 0 0 0 ! − 2 0 0 1 ! + 2 0 1 8 2 0 0 0 ! − 1 9 9 9 ! + 2 0 1 8 2 0 0 0 ! − 1 9 9 8 ! x 3 − 5 ⌊ x ⌋ + x − 5 γ = 1 + 2 0 1 8 1 9 9 9 ! − 2 0 0 1 ! + 2 0 1 8 1 9 9 9 ! − 2 0 0 0 ! + 2 0 1 8 1 9 9 9 ! − 1 9 9 8 ! x 3 − 5 ⌊ x ⌋ + x − 5 φ = 1 + 2 0 1 8 1 9 9 8 ! − 2 0 0 1 ! + 2 0 1 8 1 9 9 8 ! − 2 0 0 0 ! + 2 0 1 8 1 9 9 8 ! − 1 9 9 9 ! x 3 − 5 ⌊ x ⌋ + x − 5
where x ∈ R . When α + β + γ + φ = { x } , the solutions for x are a 1 , a 2 , … , a n ∀ positive integers n ≥ 1 . Calculate the value of i = 1 ∑ n a i 4 , correct to 2 decimal places .
Clarification:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
For convenience, let a = 2 0 0 1 ! , b = 2 0 0 0 ! , c = 1 9 9 9 ! and d = 1 9 9 8 ! .
Adding all the given values, it becomes:
α + β + γ + φ = ( x 3 − 5 ⌊ x ⌋ + x − 5 ) ( 1 + 2 0 1 8 a − b + 2 0 1 8 a − c + 2 0 1 8 a − d 1 + … + 1 + 2 0 1 8 d − a + 2 0 1 8 d − b + 2 0 1 8 d − c 1 ) .
Since a > b > c > d ⇒ the numbers b − a , c − a and d − a are all negative real numbers.
∴ 2 0 1 8 b − a = 2 0 1 8 a − b 1 , 2 0 1 8 c − a = 2 0 1 8 a − c 1 and 2 0 1 8 d − a = 2 0 1 8 a − d 1 .
⇒ the second factor will become 1 + 2 0 1 8 a − b + … + 2 0 1 8 a − d 1 + 2 0 1 8 a − b + … + 2 0 1 8 a − d = 1 after the manipulation of the complex fraction.
⇒ α + β + γ + φ = ( x 3 − 5 ⌊ x ⌋ + x − 5 ) ( 1 ) = x 3 − 5 ⌊ x ⌋ + x − 5 = { x } .
We know that { x } = x − ⌊ x ⌋ ∀ x ∈ R ⇒ x 3 − 5 ⌊ x ⌋ + x − 5 = x − ⌊ x ⌋ ⇒ x 3 − 4 ⌊ x ⌋ = 5 .
Note that x − 1 < ⌊ x ⌋ ≤ x .
CASE 1: If x ≥ 3 ⇒ x 3 − 4 ⌊ x ⌋ ≥ x 3 − 4 x = x ( x 2 − 4 ) ≥ 1 5 . Hence, x ∈ / R .
CASE 2: If x ≤ − 2 ⇒ x 3 − 4 ⌊ x ⌋ < x 3 − 4 ( x − 1 ) = x ( x 2 − 4 ) + 4 ≤ 4 . Hence, x ∈ / R .
∴ the solutions for x must be − 2 < x < 3 .
CASE 1: If ⌊ x ⌋ = − 2 ⇒ x 3 = − 3 ⇒ x = − 3 3 < − 1 . Hence, it is a solution.
CASE 2: If ⌊ x ⌋ = − 1 ⇒ x 3 = 1 ⇒ x = 1 > 0 . Hence, it is not a solution.
CASE 3: If ⌊ x ⌋ = 0 ⇒ x 3 = 5 ⇒ x = 3 5 > 1 . Hence, it is not a solution.
CASE 4: If ⌊ x ⌋ = 1 ⇒ x 3 = 9 ⇒ x = 3 9 > 2 . Hence, it is not asolution.
CASE 5: If ⌊ x ⌋ = 2 ⇒ x 3 = 1 3 ⇒ x = 3 1 3 < 3 . Hence, it is a solution.
∴ i = 1 ∑ n a i 4 = ( − 3 3 ) 4 + ( 3 1 3 ) 4 = 3 4 . 8 9 , correct to two decimal places .
Kindly comment here for clarification in my solution.