Factorials, Gaussian Functions, ... then Sum!

Algebra Level 5

Let α \alpha , β \beta , γ \gamma and φ \varphi be real numbers such that:

{ α = x 3 5 x + x 5 1 + 201 8 2001 ! 2000 ! + 201 8 2001 ! 1999 ! + 201 8 2001 ! 1998 ! β = x 3 5 x + x 5 1 + 201 8 2000 ! 2001 ! + 201 8 2000 ! 1999 ! + 201 8 2000 ! 1998 ! γ = x 3 5 x + x 5 1 + 201 8 1999 ! 2001 ! + 201 8 1999 ! 2000 ! + 201 8 1999 ! 1998 ! φ = x 3 5 x + x 5 1 + 201 8 1998 ! 2001 ! + 201 8 1998 ! 2000 ! + 201 8 1998 ! 1999 ! \begin{cases} \alpha = \dfrac{x^3 - 5\lfloor x \rfloor + x - 5}{1 + 2018^{2001!-2000!} + 2018^{2001!-1999!} + 2018^{2001!-1998!}} \\ \beta = \dfrac{x^3 - 5\lfloor x \rfloor + x - 5}{1 + 2018^{2000!-2001!} + 2018^{2000!-1999!} + 2018^{2000!-1998!}} \\ \gamma = \dfrac{x^3 - 5\lfloor x \rfloor + x - 5}{1 + 2018^{1999!-2001!} + 2018^{1999!-2000!} + 2018^{1999!-1998!}} \\ \varphi = \dfrac{x^3- 5\lfloor x \rfloor + x - 5}{1 + 2018^{1998!-2001!} + 2018^{1998!-2000!} + 2018^{1998!-1999!}} \end{cases}

where x R x \in \mathbb R . When α + β + γ + φ = { x } \alpha + \beta + \gamma + \varphi = \{ x \} , the solutions for x x are a 1 , a 2 , , a n a_1, a_2, \ldots, a_n \forall positive integers n 1 n \geq 1 . Calculate the value of i = 1 n a i 4 \displaystyle \sum_{i = 1}^n a_{i}^ 4 , correct to 2 decimal places .


Clarification:

  1. The piecewise functions \lfloor \cdot \rfloor and { } \{ \cdot \} denote the floor function and the fractional part function respectively.
  2. The exponents of the numbers with base 2018 are the pairwise differences of the numbers 2001 ! , 2000 ! , 1999 ! 2001! , 2000! , 1999! and 1998 ! 1998!


The answer is 34.89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kobe Mercado
Dec 10, 2018

For convenience, let a = 2001 ! a = 2001! , b = 2000 ! b = 2000! , c = 1999 ! c = 1999! and d = 1998 ! d = 1998! .

Adding all the given values, it becomes:

α + β + γ + φ = ( x 3 5 x + x 5 ) ( 1 1 + 201 8 a b + 201 8 a c + 201 8 a d + + 1 1 + 201 8 d a + 201 8 d b + 201 8 d c ) \alpha + \beta + \gamma + \varphi = (x^3 - 5\lfloor x \rfloor + x - 5)(\frac{1}{1 + 2018^{a-b} + 2018^{a-c} + 2018^{a-d}} + \ldots + \frac{1}{1 + 2018^{d-a} + 2018^{d-b} + 2018^{d-c}}) .

Since a > b > c > d a > b > c > d \Rightarrow the numbers b a , c a b-a, c-a and d a d-a are all negative real numbers.

\therefore 201 8 b a = 1 201 8 a b 2018^{b-a} = \frac{1}{2018^{a-b}} , 201 8 c a = 1 201 8 a c 2018^{c-a} = \frac{1}{2018^{a-c}} and 201 8 d a = 1 201 8 a d 2018^{d-a} = \frac{1}{2018^{a-d}} .

\Rightarrow the second factor will become 1 + 201 8 a b + + 201 8 a d 1 + 201 8 a b + + 201 8 a d = 1 \frac{1 + 2018^{a-b} + \ldots + 2018^{a-d}}{1 + 2018^{a-b} + \ldots + 2018^{a-d}} = 1 after the manipulation of the complex fraction.

α + β + γ + φ = ( x 3 5 x + x 5 ) ( 1 ) = x 3 5 x + x 5 = { x } \Rightarrow \alpha + \beta + \gamma + \varphi = (x^3 -5\lfloor x \rfloor + x - 5)(1) = x^3 - 5\lfloor x \rfloor + x - 5 = \{x\} .

We know that { x } = x x x R x 3 5 x + x 5 = x x x 3 4 x = 5 \{x\} = x - \lfloor x \rfloor \forall x \in R \Rightarrow x^3 - 5\lfloor x \rfloor + x - 5 = x - \lfloor x \rfloor \Rightarrow x^3 - 4\lfloor x \rfloor = 5 .

Note that x 1 < x x x-1 < \lfloor x \rfloor \leq x .

CASE 1: If x 3 x 3 4 x x 3 4 x = x ( x 2 4 ) 15 x \geq 3 \Rightarrow x^3 - 4\lfloor x \rfloor \geq x^3 - 4x = x(x^2 -4 ) \geq 15 . Hence, x R x \notin R .

CASE 2: If x 2 x 3 4 x < x 3 4 ( x 1 ) = x ( x 2 4 ) + 4 4 x \leq -2 \Rightarrow x^3 - 4\lfloor x \rfloor < x^3 - 4(x-1) = x(x^2 - 4) + 4 \leq 4 . Hence, x R x \notin R .

\therefore the solutions for x x must be 2 < x < 3 -2 < x < 3 .

CASE 1: If x = 2 x 3 = 3 x = 3 3 < 1 \lfloor x \rfloor = -2 \Rightarrow x^3 = -3 \Rightarrow x = -\sqrt[3]{3} < -1 . Hence, it is a solution.

CASE 2: If x = 1 x 3 = 1 x = 1 > 0 \lfloor x \rfloor = -1 \Rightarrow x^3 = 1 \Rightarrow x = 1 > 0 . Hence, it is not a solution.

CASE 3: If x = 0 x 3 = 5 x = 5 3 > 1 \lfloor x \rfloor = 0 \Rightarrow x^3 = 5 \Rightarrow x = \sqrt[3]{5} > 1 . Hence, it is not a solution.

CASE 4: If x = 1 x 3 = 9 x = 9 3 > 2 \lfloor x \rfloor = 1 \Rightarrow x^3 = 9 \Rightarrow x = \sqrt[3]{9} > 2 . Hence, it is not asolution.

CASE 5: If x = 2 x 3 = 13 x = 13 3 < 3 \lfloor x \rfloor = 2 \Rightarrow x^3 = 13 \Rightarrow x = \sqrt[3]{13} < 3 . Hence, it is a solution.

i = 1 n a i 4 = ( 3 3 ) 4 + ( 13 3 ) 4 = 34.89 \therefore \displaystyle \sum_{i = 1}^n a_i^4 = (-\sqrt[3]{3})^4 + (\sqrt[3]{13})^4 = \boxed{34.89} , correct to two decimal places .


Kindly comment here for clarification in my solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...