Factoring a quartic

Algebra Level 4

If k = 1 20 k 2 1 2 k 4 + 1 4 = A B \sum\limits_{k=1}^{20}\frac{k^2-\frac12}{k^4+\frac14}=\frac{A}{B} , where A A and B B are relatively coprime positive integers., find A A


The answer is 800.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Barack Clinton
Feb 17, 2015

k 4 + 1 4 = ( k 2 k + 1 2 ) ( k 2 + k + 1 2 ) k^4+\frac{1}{4}=\left(k^2-k+\frac12\right)\left(k^2+k+\frac12\right) Thus; k = 1 n k 2 1 2 k 4 + 1 4 = k = 1 n ( k 1 2 k 2 k + 1 2 k + 1 2 k 2 + k + 1 2 ) = k = 1 n ( k 1 2 k 2 k + 1 2 ( k + 1 ) 1 2 ( k + 1 ) 2 ( k + 1 ) + 1 2 ) \sum\limits_{k=1}^{n}\frac{k^2-\frac12}{k^4+\frac14}=\sum\limits_{k=1}^{n}\left(\frac{k-\frac12}{k^2-k+\frac12}-\frac{k+\frac12}{k^2+k+\frac12}\right)=\sum\limits_{k=1}^{n}\left(\frac{k-\frac12}{k^2-k+\frac12}-\frac{(k+1)-\frac12}{(k+1)^2-(k+1)+\frac12}\right)

Since the sum above is telescoping, we get the general formula 1 2 n + 1 2 n 2 + 2 n + 1 1-\frac{2n+1}{2n^2+2n+1}

For n = 20 n=20 it gives 800 841 A = 800 \frac{800}{841}\Rightarrow A=800

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...