Factoring Cubes

Algebra Level 1

If x + 1 x = 4 x+\dfrac{1}{x}=4 , then what is x 3 + 1 x 3 x^3+\dfrac{1}{x^3} ?

64 16 52 49

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

We know that ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 \large(x+y)^3=x^3+3x^2y+3xy^2+y^3 . We apply this to x + 1 x = 4 \large x+\dfrac{1}{x}=4 .

( x + 1 x = 4 ) 3 \large \left(x+\dfrac{1}{x}=4\right)^3 \implies x 3 + 3 x + 3 x + 1 x 3 = 64 \large x^3+3x+\dfrac{3}{x}+\dfrac{1}{x^3}=64 \implies x 3 + 1 x 3 = 64 3 x 3 x \large x^3+\dfrac{1}{x^3}=64-3x-\dfrac{3}{x} \implies x 3 + 1 x 3 = 64 3 ( x + 1 x ) \large x^3+\dfrac{1}{x^3}=64-3\left(x+\dfrac{1}{x}\right)

\implies x 3 + 1 x 3 = 64 3 ( 4 ) = 64 12 = \large x^3+\dfrac{1}{x^3}=64-3(4)=64-12= 52 \large \color{#D61F06}\boxed{52}

Terry Yu
Jun 16, 2017

You can cube both sides, providing

( x + 1 x ) 3 = 4 3 (x+\dfrac{1}{x})^3=4^3

x 3 + 1 x 3 + 3 x + 3 x = 64 x^3+\dfrac{1}{x^3}+3x+\dfrac{3}{x}=64

x 3 + 1 x 3 + 3 ( x + 1 x ) = 64 x^3+\dfrac{1}{x^3}+3(x+\dfrac{1}{x})=64

x 3 + 1 x 3 + 3 ( 4 ) = 64 x^3+\dfrac{1}{x^3}+3(4)=64

x 3 + 1 x 3 = 64 12 = 52 x^3+\dfrac{1}{x^3}=64-12=\color{#20A900}\large\boxed{52}

x + 1 x = 4 ( x + 1 x ) 3 = x 3 + 1 x 3 + 3 x 2 1 x + 3 x 1 x 2 4 3 = x 3 + 1 x 3 + 3 x 1 x ( x + 1 x ) 64 = x 3 + 1 x 3 + 3 4 52 = x 3 + 1 x 3 x+\frac { 1 }{ x } =4\\ { \left( x+\frac { 1 }{ x } \right) }^{ 3 }={ x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } +3{ x }^{ 2 }\frac { 1 }{ x } +3x\frac { 1 }{ { x }^{ 2 } } \\ { 4 }^{ 3 }={ x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } +3x\frac { 1 }{ x } \left( x+\frac { 1 }{ x } \right) \\ 64={ x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } } +3\cdot 4\\ 52={ x }^{ 3 }+\frac { 1 }{ { x }^{ 3 } }

Arthur Conmy
Jun 30, 2017

A well known cubic identity is a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2)

We can apply this to x 3 + 1 x 3 x^3+\frac{1}{x^3} as follows

x 3 + 1 x 3 = x 3 + ( 1 x ) 3 = ( x + 1 x ) ( x 2 + ( 1 x ) 2 1 ) x^3+\frac{1}{x^3}=x^3+(\frac{1}{x})^{3}=(x+\frac{1}{x})(x^2+(\frac{1}{x})^2-1)

Notice x 2 + ( 1 x ) 2 = ( x + 1 x ) 2 2 x^2+(\frac{1}{x})^2=(x+\frac{1}{x})^2-2

So x 3 + 1 x 3 = ( x + 1 x ) ( ( x + 1 x ) 2 2 1 ) x^3+\frac{1}{x^3}=(x+\frac{1}{x})((x+\frac{1}{x})^2-2-1)

x 3 + 1 x 3 = ( 4 ) ( ( 4 ) 2 3 ) x^3+\frac{1}{x^3}=(4)((4)^2-3)

x 3 + 1 x 3 = 52 x^3+\frac{1}{x^3}=52 , and we have our answer

Mohammad Khaza
Jun 30, 2017

a^3+b^3=(a+b)^3 - 3ab(a+b)

so,x^3+1/x^3=(4)^3-3 x 4=64-12=52

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...