Factorization is an art (5)

Algebra Level 4

f ( x ) = 4 x 3 6 x 2 + 4 x 1 \large f(x)=4x^3-6x^2+4x-1

If f ( 2016 ) + f ( 2015 ) + + f ( 2015 ) + f ( 2016 ) = f ( y ) f(-2016)+f(-2015)+\cdots+f(2015)+f(2016)=-f(y) , find y y .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Telescoping Series - Sum

f ( x ) = 4 x 3 6 x 2 + 4 x 1 Note that ( x 1 ) 4 = x 4 4 x 3 + 6 x 2 4 x + 1 = x 4 ( x 1 ) 4 \begin{aligned} f(x) & = 4x^3-6x^2+4x-1 & \small \color{#3D99F6}{\text{Note that }(x-1)^4 = x^4 - 4x^3+6x^2-4x+1} \\ & = x^4 - (x-1)^4 \end{aligned}

2016 2016 f ( x ) = 2016 2016 ( x 4 ( x 1 ) 4 ) = 2016 2016 x 4 2017 2015 x 4 = 201 6 4 201 7 4 = ( 201 7 4 201 6 4 ) = f ( 2017 ) \begin{aligned} \implies \sum_{-2016}^{2016} f(x) & = \sum_{-2016}^{2016} \left( x^4 - (x-1)^4 \right) \\ & = \sum_{-2016}^{2016} x^4 - \sum_{-2017}^{2015} x^4 \\ & = 2016^4 - 2017^4 \\ & = -\left(2017^4 - 2016^4\right) \\ & = - f(2017) \end{aligned}

y = 2017 \implies y = \boxed{2017}

In the first line it should be: 4 x 3 6 x 2 4x^3-6x^2

Yuri Lombardo - 4 years, 10 months ago

Log in to reply

Thank you. I have done the changes.

Chew-Seong Cheong - 4 years, 10 months ago
John Gilling
Jul 5, 2016

Here's my solution:

The key is to note that the function is (rotationally) symmetric about the point ( 1 / 2 , 0 ) (1/2,0) . We can see this because f ( 1 x ) = f(1-x)= 4 ( 1 x ) 3 6 ( 1 x ) 2 + 4 ( 1 x ) 1 = 4(1-x)^3-6(1-x)^2+4(1-x)-1= 4 x 3 + 6 x 2 4 x + 1 = -4x^3+6x^2-4x+1= f ( x ) -f(x)

So then, the terms in the series cancel out one by one, leaving only f ( 2016 ) = f ( 1 ( 2016 ) ) = f ( 2017 ) f(-2016)=-f(1-(-2016))=-f (2017) .

Thank you very much! It is an intelligent way to solve the problem !

Tommy Li - 4 years, 11 months ago
Tommy Li
Jul 5, 2016

f ( x ) = 4 x 3 6 x 2 + 4 x 1 \large f(x)=4x^3-6x^2+4x-1

f ( x ) = ( x 4 + 4 x 3 6 x 2 + 4 x 1 ) + x 4 \large f(x)=(-x^4+4x^3-6x^2+4x-1) +x^4

f ( x ) = x 4 ( x 1 ) 4 \large f(x)=x^4-(x-1)^4

f ( 2016 ) + f ( 2015 ) + + f ( 2015 ) + f ( 2016 ) f(-2016)+f(-2015)+\dots+f(2015)+f(2016)

= ( ( ( 2016 ) 4 ( 2017 ) 4 ) + ( ( 2015 ) 4 ( 2016 ) 4 ) + + ( ( 1 ) 4 ( 2 ) 4 ) + ( ( 0 ) 4 ( 1 ) 4 ) ) = \left(((-2016)^4-(-2017)^4)+((-2015)^4-(-2016)^4)+\dots+((-1)^4-(-2)^4)+((0)^4-(-1)^4)\right)

+ ( ( ( 1 ) 4 ( 0 ) 4 ) + ( ( 2 ) 4 ( 1 ) 4 ) + + ( ( 2015 ) 4 ( 2014 ) 4 ) + ( ( 2016 ) 4 ( 2015 ) 4 ) ) +\left( ((1)^4-(0)^4)+((2)^4-(1)^4)+\dots+((2015)^4-(2014)^4)+((2016)^4-(2015)^4)\right)

= 201 7 4 + 201 6 4 =-2017^4+2016^4

= ( 201 7 4 201 6 4 ) = -(2017^4-2016^4)

= f ( 2017 ) = -f(2017)

y = 2017 \Rightarrow y=2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...