f ( x ) = 4 x 3 − 6 x 2 + 4 x − 1
If f ( − 2 0 1 6 ) + f ( − 2 0 1 5 ) + ⋯ + f ( 2 0 1 5 ) + f ( 2 0 1 6 ) = − f ( y ) , find y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In the first line it should be: 4 x 3 − 6 x 2
Here's my solution:
The key is to note that the function is (rotationally) symmetric about the point ( 1 / 2 , 0 ) . We can see this because f ( 1 − x ) = 4 ( 1 − x ) 3 − 6 ( 1 − x ) 2 + 4 ( 1 − x ) − 1 = − 4 x 3 + 6 x 2 − 4 x + 1 = − f ( x )
So then, the terms in the series cancel out one by one, leaving only f ( − 2 0 1 6 ) = − f ( 1 − ( − 2 0 1 6 ) ) = − f ( 2 0 1 7 ) .
Thank you very much! It is an intelligent way to solve the problem !
f ( x ) = 4 x 3 − 6 x 2 + 4 x − 1
f ( x ) = ( − x 4 + 4 x 3 − 6 x 2 + 4 x − 1 ) + x 4
f ( x ) = x 4 − ( x − 1 ) 4
f ( − 2 0 1 6 ) + f ( − 2 0 1 5 ) + ⋯ + f ( 2 0 1 5 ) + f ( 2 0 1 6 )
= ( ( ( − 2 0 1 6 ) 4 − ( − 2 0 1 7 ) 4 ) + ( ( − 2 0 1 5 ) 4 − ( − 2 0 1 6 ) 4 ) + ⋯ + ( ( − 1 ) 4 − ( − 2 ) 4 ) + ( ( 0 ) 4 − ( − 1 ) 4 ) )
+ ( ( ( 1 ) 4 − ( 0 ) 4 ) + ( ( 2 ) 4 − ( 1 ) 4 ) + ⋯ + ( ( 2 0 1 5 ) 4 − ( 2 0 1 4 ) 4 ) + ( ( 2 0 1 6 ) 4 − ( 2 0 1 5 ) 4 ) )
= − 2 0 1 7 4 + 2 0 1 6 4
= − ( 2 0 1 7 4 − 2 0 1 6 4 )
= − f ( 2 0 1 7 )
⇒ y = 2 0 1 7
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Telescoping Series - Sum
f ( x ) = 4 x 3 − 6 x 2 + 4 x − 1 = x 4 − ( x − 1 ) 4 Note that ( x − 1 ) 4 = x 4 − 4 x 3 + 6 x 2 − 4 x + 1
⟹ − 2 0 1 6 ∑ 2 0 1 6 f ( x ) = − 2 0 1 6 ∑ 2 0 1 6 ( x 4 − ( x − 1 ) 4 ) = − 2 0 1 6 ∑ 2 0 1 6 x 4 − − 2 0 1 7 ∑ 2 0 1 5 x 4 = 2 0 1 6 4 − 2 0 1 7 4 = − ( 2 0 1 7 4 − 2 0 1 6 4 ) = − f ( 2 0 1 7 )
⟹ y = 2 0 1 7