Factorization is an art

Algebra Level 5

A root of 10 x 3 3 x 2 3 x 1 = 0 10x^3-3x^2-3x-1=0 is of the form a 3 + b 3 + 1 c \dfrac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c} , where a a , b b , and c c are positive integers. Find a + b + c a+b+c .


The answer is 142.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tommy Li
Jun 5, 2016

10 x 3 3 x 2 3 x 1 = 0 10x^3-3x^2-3x-1=0

11 x 3 = x 3 + 3 x 2 + 3 x + 1 11x^3=x^3+3x^2+3x+1

11 x 3 = ( x + 1 ) 3 11x^3=(x+1)^3

11 = ( x + 1 ) 3 x 3 11=\frac{(x+1)^3}{x^3}

11 3 = 1 + 1 x \sqrt[3]{11}=1+\frac{1}{x}

1 11 3 1 = x \frac{1}{\sqrt[3]{11}-1}=x

1 ( ( 11 3 ) 2 + 11 3 + 1 ) ( 11 3 1 ) ( ( 11 3 ) 2 + 11 3 + 1 ) = x \frac{1((\sqrt[3]{11})^2+\sqrt[3]{11}+1)}{(\sqrt[3]{11}-1)((\sqrt[3]{11})^2+\sqrt[3]{11}+1)}=x

121 3 + 11 3 + 1 11 1 = x \frac{\sqrt[3]{121}+\sqrt[3]{11}+1}{11-1}=x

121 3 + 11 3 + 1 10 = x \frac{\sqrt[3]{121}+\sqrt[3]{11}+1}{10}=x

a + b + c = 121 + 11 + 10 = 142 a+b+c=121+11+10=142

Same Method (+1) :)

Aditya Sky - 5 years ago

( X 3 3 X 2 3 X 1 ) = ( X + 1 ) 3 . 10 X 3 3 X 2 3 X 1 = 11 X 3 ( X + 1 ) 3 = 0. ( 1 3 1 X ) 3 ( X + 1 ) 3 = 0. D i f f e r e n c e o f t w o c u b e s . ( A ) { 11 3 X X 1 } = 0 , o r ( B ) { ( 1 3 1 X ) 2 + 1 3 1 X ( X + 1 ) + ( X + 1 ) 3 } = 0. ( A ) X ( 11 3 1 ) = 1. X = 1 11 3 1 . B u t g e t t i n g r i d o f t h e r a d i c a l i n t h e d e n o m i n a t o r , X = ( 11 3 ) 2 + 11 3 1 + 1 2 ( 11 3 ) 3 1 3 ) = 121 3 + 11 3 + 1 11 1 = a 3 + b 3 + 1 c . a + b + c = 121 + 11 + 10 = 142. -(X^3-3X^2-3X-1)=-(X+1)^3.\\ \therefore~10X^3-3X^2-3X-1=11X^3-(X+1)^3=0.\\ \implies~(\sqrt[3]11*X)^3-(X+1)^3=0.~~~~~Difference~ of~ two~ cubes.\\ \therefore~~(A)~~\{\sqrt[3]{11}*X-X-1\}=0,~~~or~~~~~(B)~~\{(\sqrt[3]11*X)^2+\sqrt[3]11*X*(X+1)+(X+1)^3\}=0.\\ (A) ~~~\implies~ X( \sqrt[3]{11}-1)=1.\\ \therefore~X=\dfrac 1{ \sqrt[3]{11}-1}.~~But~getting~ rid~ of~ the~ radical~ in ~the~ denominator, \\ X=\dfrac{ ( \sqrt[3]{11})^2 + \sqrt[3]{11}*1+1^2}{( \sqrt[3]{11})^3-1^3)}\\ = \dfrac{ \sqrt[3]{121} + \sqrt[3]{11}+1}{11-1}\\ = \dfrac{ \sqrt[3] a + \sqrt[3] b+1} c. \\ \therefore~~a+b+c=121+11+10=\Large ~~~\color{#D61F06}{142}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...