Factorize FTW!

Find the sum of the prime factors of 3 16 65 , 536 3^{16}-65,536


The answer is 533.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Bhargav Das
Dec 26, 2013

The key thing here is noting that: 65536 = 2 16 65536=2^{16} .

Hence, we need to find the sum of the prime factors of : 3 16 2 16 3^{16}-2^{16} .

In fact, the expression is factorisable since,

3 16 2 16 = ( 3 8 + 2 8 ) ( 3 8 2 8 ) 3^{16}-2^{16}=(3^8+2^8)(3^8-2^8)

= ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 4 2 4 ) =(3^8+2^8)(3^4+2^4)(3^4-2^4)

= ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 2 + 2 2 ) ( 3 2 2 2 ) =(3^8+2^8)(3^4+2^4)(3^2+2^2)(3^2-2^2)

= ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 2 + 2 2 ) ( 3 + 2 ) ( 3 2 ) =(3^8+2^8)(3^4+2^4)(3^2+2^2)(3+2)(3-2)

= ( 6817 ) ( 97 ) ( 13 ) ( 5 ) ( 1 ) =(6817)(97)(13)(5)(1)

Now, we need to check if 6817 6817 is prime or not as that's the only thing to be worried about because all the other are primes.

One can notice that 17 6817 17\mid 6817 by seeing 68 68 and 17 17 in 6817 6817 and hence 6817 6817 isn't a prime.

The following part is for those who didn't notice the above thing.

We note, 6817 82.5 \sqrt{6817} \approx 82.5 .

So, we need to check for odd integers(Since 6817 6817 is odd) less than 82 82 which may divide 6817 6817 .

Our luck is quite good as we don't have to go much far as 17 17 divides 6817 6817 and hence 6817 6817 is not a prime.

Now, dividing 6817 6817 by 17 17 we get 401 401 .

We check 401 401 in a similar way if it's a prime or not.On checking, we get that it's a prime.

So,

3 16 65536 = 3 16 2 16 = ( 6817 ) ( 97 ) ( 13 ) ( 5 ) = ( 401 ) ( 17 ) ( 97 ) ( 13 ) ( 5 ) 3^{16}-65536=3^{16}-2^{16}=(6817)(97)(13)(5)=(401)(17)(97)(13)(5) .

Hence,our required sum is: 401 + 17 + 97 + 13 + 5 = 533 . 401+17+97+13+5=\boxed{533}.

Sir, you need to check ONLY THE PRIME NUMBERS below 82.5 that divide 6817 to check whether or not is this prime.

Priyansh Saxena - 7 years, 5 months ago

Log in to reply

Come on,man I am not a Sir. Look my age. Ya I missed that actually.Thanks.

Bhargav Das - 7 years, 5 months ago

I did the same thing, and was lucky enough to see 6817=6800+17=17(400+1)=(17)(401). I was hoping for a more elegant solution haha

Linus Setiabrata - 7 years, 5 months ago

what is 2*2 a 100 times

Keshav Bansal - 7 years, 4 months ago
Raj Magesh
Dec 26, 2013

First, we note that 65536 = 2 16 65536 = 2^{16} .

Next, we use the identity a 2 b 2 = ( a + b ) ( a b ) a^{2} - b^{2} = (a+b)(a-b) to factorize the given expression repeatedly:

3 16 2 16 = ( 3 8 + 2 8 ) ( 3 8 2 8 ) = ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 4 2 4 ) = ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 2 + 2 2 ) ( 3 2 2 2 ) = ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 2 + 2 2 ) ( 3 + 2 ) ( 3 2 ) \begin{aligned}3^{16} - 2^{16} &= (3^{8} + 2^{8})(3^{8} - 2^{8})\\&= (3^{8} + 2^{8})(3^{4} + 2^{4})(3^{4} - 2^{4}) \\ &= (3^{8} + 2^{8})(3^{4} + 2^{4})(3^{2}+ 2^{2})(3^{2}-2^{2}) \\&= (3^{8} + 2^{8})(3^{4} + 2^{4})(3^{2}+ 2^{2})(3 + 2)(3 - 2)\end{aligned}

3 16 2 16 = 6817 × 97 × 13 × 5 × 1 = 17 × 401 × 97 × 13 × 5 \begin{aligned}3^{16} - 2^{16} &= 6817 \times 97 \times 13 \times 5 \times 1\\ &= 17 \times 401 \times 97 \times 13 \times 5\end{aligned}

We note that these factors are all prime and so:

17 + 401 + 97 + 13 + 5 = 533 17 + 401 + 97 + 13 + 5 = \boxed{533}

Shaun Loong
Jan 4, 2014

Notice that 65536 = 2 16 65536=2^{16} . 3 16 2 16 \therefore 3^{16}-2^{16} 3 16 2 16 = ( 3 8 ) 2 ( 2 8 ) 2 3^{16}-2^{16}=\left ( 3^{8} \right )^{2}-\left ( 2^{8} \right )^{2} 3 16 2 16 = ( 3 8 + 2 8 ) ( 3 8 2 8 ) 3^{16}-2^{16}=\left ( 3^{8}+2^{8} \right ) \left ( 3^{8}-2^{8} \right ) Notice that ( 3 8 2 8 ) \left ( 3^{8}-2^{8} \right ) can be further factorized by repeating the process where a 2 b 2 = ( a + b ) ( a b ) a^{2}-b^{2}=\left ( a+b \right )\left ( a-b \right ) . Hence, we will eventually obtain:

( 3 16 2 16 ) ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 2 + 2 2 ) ( 3 2 2 2 ) \left ( 3^{16}-2^{16} \right )\equiv \left ( 3^{8}+2^{8} \right )\left ( 3^{4}+2^{4} \right )\left ( 3^{2}+2^{2} \right )\left ( 3^{2}-2^{2} \right ) 3 16 2 16 = ( 6817 ) ( 97 ) ( 13 ) ( 5 ) 3^{16}-2^{16}=\left ( 6817 \right )\left ( 97 \right )\left ( 13 \right )\left ( 5 \right )

Because 6817 is not a prime number, hence we have to prime factorize 6817 6817 into 6817 = 17 × 401 6817=17\times 401 .

3 16 2 16 = ( 17 ) ( 401 ) ( 97 ) ( 13 ) ( 5 ) \therefore 3^{16}-2^{16}=\left ( 17 \right )\left ( 401 \right )\left ( 97 \right )\left ( 13 \right )\left ( 5 \right )

Thus, the sum of prime factors are 17 + 401 + 97 + 13 + 5 = 533 17+401+97+13+5=\boxed{533} .

Raghav Dua
Dec 26, 2013

(3^16) = 43046721

thus, (3^16) - 65536 = 42981185

leave the rest up to c++ ;-)

(write the include iostream statement here, I can't because the site treats it as a formatting character)

using namespace std;

bool isPrime (const int& number) {

bool property (true);

if (number % 2 == 0) { property = false; }

else {

for (int i = 3; i < number; i += 2) {

  if (number % i == 0) {

property = false;

break;

  }

}

}

return (property);

}

int main () {

unsigned int axa = 42981185;

for (int i = 2; i < axa; i++) {

if (axa % i == 0 && (isPrime (i)) == true) {

  cout << i << ", ";

}

}

cout << endl;

return (0);

}

A L
Jan 8, 2014

3^16 - 65,536 = 42981185. The prime factorization of that number is 5 x 13 x 17 x 97 x 401. The sum of these numbers is 533. Therefore, 533 is the sum of the prime factors of 3^16 - 65,536.

Ivan Sekovanić
Jan 4, 2014

First of all, note that 65536 = 2 16 65536=2^{16} . Therefore, considering that a 2 b 2 = ( a b ) ( a + b ) a^{2}-b^{2}=(a-b)(a+b) , we get that

3 16 65536 = 3 16 2 16 = ( 3 8 + 2 8 ) ( 3 8 2 8 ) = ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 4 2 4 ) = 3^{16}-65536=3^{16}-2^{16}=(3^{8}+2^{8})(3^{8}-2^{8})=(3^{8}+2^{8})(3^{4}+2^{4})(3^{4}-2^{4})= = ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 2 + 2 2 ) ( 3 2 2 2 ) = ( 3 8 + 2 8 ) ( 3 4 + 2 4 ) ( 3 2 + 2 2 ) ( 3 1 + 2 1 ) ( 3 1 2 1 ) =(3^{8}+2^{8})(3^{4}+2^{4})(3^{2}+2^{2})(3^{2}-2^{2})=(3^{8}+2^{8})(3^{4}+2^{4})(3^{2}+2^{2})(3^{1}+2^{1})(3^{1}-2^{1}) .

Let us look at the brackets.

3 8 + 2 8 = 6817 = 17 401 3^{8}+2^{8}=6817=17\cdot401 , which are both prime. 3 4 + 2 4 = 97 3^{4}+2^{4}=97 , which is a prime. 3 2 + 2 2 3^{2}+2^{2} =13, which is a prime. 3 + 2 = 5 3+2=5 , which is also a prime.

Thus, the sum we need is 17 + 401 + 97 + 13 + 5 = 533 17+401+97+13+5=\boxed{533}

Po Bo
Jan 3, 2014

Only use calculator and the web http://www.mathsisfun.com/prime-factorization-tool.php :P

Giuseppe Zecchini
Dec 27, 2013

65536 = 25 6 2 65536=256^2 ( 3 8 ) 2 25 6 2 = ( 3 8 256 ) ( 3 8 + 256 ) = ( ( 3 4 ) 2 1 6 2 ) ( 3 8 + 256 ) = ( 3 4 16 ) ( 3 4 + 16 ) ( 3 8 + 256 ) = 65 97 6817 = 5 13 97 17 401 (3^8)^2-256^2=(3^8-256)(3^8+256)=((3^4)^2-16^2)(3^8+256)=(3^4-16)(3^4+16)(3^8+256)=65\cdot 97 \cdot 6817=5 \cdot 13 \cdot 97 \cdot 17 \cdot 401 so the sum is equal to 533.

Budi Utomo
Dec 24, 2013

The problem above have solution 5 x 13 x 17 x 97 x 401 . So, 5 + 17 + 13 + 97 + 401 = 533 (ANSWERED)

65,536 = 2^16, therefore the number can be factorised: (a^8+b^8)(a^4+b^4)(a^2+b^2)(a+b)(a-b) = 6817 97 13 5 1 = 17 401 97 13 5 All of these factors are prime numbers, add them: 533

Cees Otto - 7 years, 5 months ago

My * sign doesn't appear between numbers, please correct :-(

Cees Otto - 7 years, 5 months ago

Log in to reply

Inside \ ( ...... \ ), you have to use "\times" for multiplication. "*" won't work inside the brackets.

Ajay Maity - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...