Factorize This

Algebra Level 2

x 2 19 x 3 2 x 2 5 x + 6 = A x 1 + B x + 2 + C x 3 \dfrac{x^2 - 19}{x^3 - 2x^2 -5x + 6} = \dfrac{A}{x-1} + \dfrac{B}{x+2} + \dfrac{C}{x-3}

Let A , B A,B and C C be constants satisfying the partial fraction decomposition above. Find A × B × C A\times B\times C .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Michael Fuller
May 7, 2016

x 2 19 x 3 2 x 2 5 x + 6 = A x 1 + B x + 2 + C x 3 \dfrac{x^2 - 19}{x^3 - 2x^2 -5x + 6} = \dfrac{A}{x-1} + \dfrac{B}{x+2} + \dfrac{C}{x-3}

x 2 19 = A ( x + 2 ) ( x 3 ) + B ( x 1 ) ( x 3 ) + C ( x 1 ) ( x + 2 ) \Rightarrow x^2 - 19 = A(x+2)(x-3) + B(x-1)(x-3) + C(x-1)(x+2)

{ x = 1 18 = 6 A A = 3 x = 2 15 = 15 B B = 1 x = 3 10 = 10 C C = 1 \begin{cases} x=1\quad \quad \Rightarrow \quad 18=-6A\quad \, \, \, \Rightarrow \quad A=3 \\ x=-2\quad \, \Rightarrow \quad -15=15B\quad \Rightarrow \quad B=-1 \\ x=3\quad \quad \Rightarrow \quad -10=10C \quad \Rightarrow \quad C=-1 \end{cases}

A B C = 1 × 3 × 1 = 3 \Rightarrow ABC = -1 \times 3 \times -1 = \large \color{#20A900}{\boxed{3}}

Relevant wiki: Partial Fractions

x 2 19 x 3 2 x 2 5 x + 6 = A x 1 + B x + 2 + C x 3 \dfrac{x^2 - 19}{x^3 - 2x^2 -5x + 6} = \dfrac{A}{x-1} + \dfrac{B}{x+2} + \dfrac{C}{x-3}

x 2 19 ( x 1 ) ( x + 2 ) ( x 3 ) = A ( x + 2 ) ( x 3 ) + B ( x 1 ) ( x 3 ) + C ( x 1 ) ( x + 2 ) ( x 1 ) ( x + 2 ) ( x 3 ) \dfrac{x^2 - 19}{(x-1)(x+2)(x-3)} = \dfrac{A(x+2)(x-3) + B(x-1)(x-3) + C(x-1)(x+2)}{(x-1)(x+2)(x-3)}

x 2 19 ( x 1 ) ( x + 2 ) ( x 3 ) = A ( x 2 x 6 ) + B ( x 2 4 x + 3 ) + C ( x 2 + x 2 ) ( x 1 ) ( x + 2 ) ( x 3 ) \dfrac{x^2 - 19}{(x-1)(x+2)(x-3)} = \dfrac{A(x^2 - x -6) + B(x^2 - 4x + 3) + C(x^2 + x - 2)}{(x-1)(x+2)(x-3)}

x 2 19 ( x 1 ) ( x + 2 ) ( x 3 ) = ( A + B + C ) x 2 + ( C A 4 B ) x + ( 3 B 6 A 2 C ) ( x 1 ) ( x + 2 ) ( x 3 ) \dfrac{x^2 - 19}{(x-1)(x+2)(x-3)} = \dfrac{(A+B+C)x^2 + (C-A-4B)x + (3B-6A-2C)}{(x-1)(x+2)(x-3)}

Then we can set equations for the coefficients of the numerator:

{ A + B + C = 1 C A 4 B = 0 3 B 6 A 2 C = 19 \begin{cases}A+B+C=1\\C-A-4B=0\\3B-6A-2C= -19\end{cases}

Adding the first two equations, we will get 2 C 3 B = 1 2C-3B = 1 , and by adding this to the last equation, we will come up with: 6 A 1 = 19 -6A -1 = -19 . Thus, A = 3 A =3 .

Then, C = B 2 C = -B-2 .

B 2 3 4 B = 5 B 5 = 0 -B-2-3-4B = -5B-5 = 0 . Thus, B = 1 B= -1 .

Hence, C = 1 C=-1 .

Therefore, A × B × C = 3 × 1 × 1 = 3 A\times B\times C = 3\times -1\times -1 = \boxed{3} .

Moderator note:

For partial fractions with linear denominators, I generally prefer to use the cover up rule as it's much more immediate (and less error prone).

Did the same..

Aditya Kumar - 5 years, 1 month ago

Nice approach, another way to solve partial fraction expansion using linear equations in three variable s.

Puneet Pinku - 5 years ago

x 2 19 x 3 2 x 2 5 x + 6 = A x 1 + B x + 2 + C x 3 x 2 19 ( x 1 ) ( x + 2 ) ( x 3 ) = A x 1 + B x + 2 + C x 3 Multiply both sides by ( x 1 ) ( x + 2 ) ( x 3 ) x 2 19 = A ( x + 2 ) ( x 3 ) + B ( x 1 ) ( x 3 ) + C ( x 1 ) ( x + 2 ) Let x = 1 : 1 19 = A ( 3 ) ( 2 ) + B ( 0 ) + C ( 0 ) A = 3 Let x = 2 : 4 19 = B ( 3 ) ( 5 ) B = 1 Let x = 3 : 9 19 = C ( 2 ) ( 5 ) C = 1 \begin{aligned} \frac{x^2-19}{x^3-2x^2-5x+6} & = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x-3} \\ \frac{x^2-19}{(x-1)(x+2)(x-3)} & = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x-3} \quad \quad \small \color{#3D99F6}{\text{Multiply both sides by }(x-1)(x+2)(x-3)} \\ x^2 - 19 & = A(x+2)(x-3) + B(x-1)(x-3) + C(x-1)(x+2) \\ \color{#3D99F6}{\text{Let }x=1:} \quad 1 - 19 & = A(3)(-2) + B(0) + C(0) \\ \implies \color{#3D99F6}{A} & = \color{#3D99F6}{3} \\ \color{#3D99F6}{\text{Let }x=-2:} \quad 4-19 & = B(-3)(-5) \\ \implies \color{#3D99F6}{B} & = \color{#3D99F6}{-1} \\ \color{#3D99F6}{\text{Let }x=3:} \quad 9-19 & = C(2)(5) \\ \implies \color{#3D99F6}{C} & = \color{#3D99F6}{-1} \end{aligned}

A × B × C = ( 3 ) ( 1 ) ( 1 ) = 3 \implies \color{#3D99F6}{A} \times \color{#3D99F6}{B} \times \color{#3D99F6}{C} = (\color{#3D99F6}{3})(\color{#3D99F6}{-1})(\color{#3D99F6}{-1}) = \boxed{3}

Using cover up method from wiki we get the following.
A = x 2 19 ( x + 2 ) ( x 3 ) x = 1 = 1 2 19 ( 1 + 2 ) ( 1 3 ) = 3. B = x 2 19 ( x 1 ) ( x 3 ) x = 2 = ( 2 ) 2 19 ( 2 1 ) ( 2 3 ) = 1. C = x 2 19 ( x 1 ) ( x + 2 ) x = 3 = 3 2 19 ( 3 1 ) ( 3 + 2 ) = 1. A B C = 3 A=\dfrac{x^2-19}{(x+2)(x-3)}|_{x=1}=\dfrac{1^2-19}{(1+2)(1-3)}=3.\\ B=\dfrac{x^2-19}{(x-1)(x-3)}|_{x=-2}=\dfrac{(-2)^2-19}{(-2 - 1)(-2 - 3)}=-1.\\ C=\dfrac{x^2-19}{(x-1)(x+2)}|_{x=3}=\dfrac{3^2-19}{(3 - 1)(3+2)}= - 1.\\ \therefore\ A*B*C=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...