Let N = 1 1 2 × 1 3 4 × 1 7 6 . How many positive factors of N 2 are less than N but not a factor of N ?
Details and assumptions
You may choose to read divisors of an integer .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have that N 2 = 1 1 4 × 1 3 8 × 1 7 1 2 , so N 2 has ( 4 + 1 ) × ( 8 + 1 ) × ( 1 2 + 1 ) divisors. For every divisor d < N there is another divisor of N 2 , d N 2 > N . Only N does not pair up with another divisor as N × N = N 2 . Thus there are 2 5 × 9 × 1 3 − 1 = 2 9 2 pairs of divisors, with 2 9 2 divisors of N 2 that are less than N .
Clearly any divisor of N is a divisor of N 2 , thus we subtract those that are divisors of N , excluding N . There are ( 2 + 1 ) × ( 4 + 1 ) × ( 6 + 1 ) − 1 = 1 0 4 divisors of N less than N . Hence, there are 2 9 2 − 1 0 4 = 1 8 8 divisors of N 2 that are less than N and are not divisors of N .
NUMBER OF DIVISORS FOR 'N' =3 5 7 =105; NUMBER OF DIVISORS FOR 'N^2'= 5 9 13 =585; NUMBER OF DIVISORS FOR 'N^2' LESS THAN OR EQUAL TO 'N'= [585/2] = 293; NUMBER OF DIVISORS FOR 'N^2' LESS THAN OR EQUAL TO 'N' AND NOT DIVISORS FOR 'N' = 293-105=188
Let A=11^ x 13^b x 17^c be Such a number.We have 26 cases: 1)a=3,b<5,c<7 There is (4+1)*(6+1)-1=34 solutions 2)a=4,b<5,c<7 There is (4+1)(6+1)-3=32 solutions 3)b=5,a<3,c<7 (2+1)(6+1)-2=19 4)b=6,a<3,c<7 (2+1)(6+1)-4=17 5)b=7,a<3,c<7 (2+1)(6+1)-7=14 6)b=8,a<3,c<7 (2+1)(6+1)-9=12 7)c=7,a<3,b<5 (2+1)(4+1)-3=12 8)c=8,a<3,b<5 (2+1)(4+1)-6=9 9)c=9,a<3,b<5 (2+1)(4+1)-9=6 10)c=10,a<3,b<5 (2+1)(4+1)-22=3 11)c=11,a<3,b<5 (2+1)(4+1)-14 12)c=12 no solutions 13)a=3,b=5,c<7 7-2=5 14)a=3,b=6,c<7 7-3=4 15)a=3,b=7,c<7 7-4=3 16)a=3,b=8,c<7 7-5=2 17)a=4,b=5,c<7 7-3=4 18)a=4,b=6,c<7 7-4=3 19)a=4,b=7,c<7 7-5=2 20)a=4,b=8,c<7 7-6=1 21)a=3,c=7,b<5 5-3=2 22)a=3,c=8,b<5 5-4=1 23)a=3,c>8,b<5 no solutions 24)a=4,c=7,b<5 5-3=2 25)a=4,c>7,b<5 no solutions 26)all other cases no solutions There is 34+32+19+17+14+12+12+9+6+3+1+5+4+3+2+4+3+2+1+2+1+2=188 Such numbers...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
Answer: 1 8 8
Problem Loading...
Note Loading...
Set Loading...
Theorem: Let M be a natural number. If M 2 has n distinct positive factors, then exactly 2 n − 1 of them are strictly less than M .
Proof: If k = M is a factor of M 2 , then one of the numbers k , k M 2 is strictly less than M and the other is strictly greater than M . This allows us to split the factors of M 2 , which are not M , into 2 equal groups. Thus, there are exactly 2 n − 1 distinct positive factors of M 2 that are strictly less than M .
Back to the original problem, we can compute for the number of factors of N and N 2 (read the blog post). There are ( 2 + 1 ) ( 4 + 1 ) ( 6 + 1 ) = 3 ∗ 5 ∗ 7 = 1 0 5 factors of N and ( 4 + 1 ) ( 8 + 1 ) ( 1 2 + 1 ) = 5 ∗ 9 ∗ 1 3 = 5 8 5 factors of N 2 . Using the above theorem, we know that 2 5 8 5 − 1 = 2 9 2 of the factors of N 2 are strictly less than N . And among these, 1 0 5 − 1 = 1 0 4 are factors of N (we have to exclude N itself). Hence, 2 9 2 − 1 0 4 = 1 8 8 factors of N 2 are simultaneously less than N and are not factors of N .
[Slight edits for clarity - Calvin]