Fairly Interesting Inequality

Algebra Level 3

If x , y , z x,y,z are positive real numbers satisfying x y z = 32 xyz=32 , find the minimum value of

x 2 + 4 x y + 4 y 2 + 2 z 2 . x^2+4xy+4y^2+2z^2.

Source: BMO 2000 #2


The answer is 96.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Jubayer Nirjhor
Sep 21, 2014

x 2 + 4 x y + 4 y 2 + 2 z 2 = x 2 + 2 x y + 2 x y + 4 y 2 + z 2 + z 2 AM GM 6 x 2 2 x y 2 x y 4 y 2 z 2 z 2 6 = 6 2 4 ( x y z ) 4 6 = x y z = 32 6 2 4 2 20 6 = 96 \begin{aligned} x^2+4xy+4y^2+2z^2 ~~&=& ~x^2+2xy+2xy+4y^2+z^2+z^2 \\ \\ & \stackrel{\text{AM GM}}{\ge} & ~6\sqrt[6]{x^2\cdot 2xy\cdot 2xy\cdot 4y^2\cdot z^2\cdot z^2} \\ \\ &=& ~6\sqrt[6]{2^4 (xyz)^4} \\ \\ &\stackrel{xyz~=~32}{=}& ~6\sqrt[6]{2^4 \cdot 2^{20}} \\ \\ &=& ~\boxed{96} \end{aligned} Equality occurs at ( x , y , z ) = ( 4 , 2 , 4 ) (x,y,z)=(4,2,4) , so 96 96 indeed is the minimum.

Oh yeah, there's AM-GM.

Cody Johnson - 6 years, 8 months ago

please what's AM-GM

Abeer Talha - 6 years, 8 months ago

Log in to reply

This.

Jubayer Nirjhor - 6 years, 8 months ago

It's Arithmetic Mean-Geometric Mean.

Shyaam Ganesh - 1 year, 1 month ago

superb your solution is perfect

Shriram Santhanam - 6 years, 8 months ago

Sorry i was saying wrong.

Ashutosh Saboo - 6 years, 8 months ago

OOps!! I'm really bad in maths!!

Zarin Anzoom - 6 years, 6 months ago

it was so simple!!!! I am really a great stupid.....Grrr..

তটিনী সরকার - 5 years, 4 months ago

Same solution as mine

P C - 5 years, 3 months ago

How did you know how to break up the variables??

Aaryan Maheshwari - 3 years, 8 months ago

Log in to reply

I wanted the powers of x , y , z x,y,z to be the same so that I can make the substitution, then played around a bit.

Jubayer Nirjhor - 3 years, 8 months ago

can't we do (x+2y)^2>=0 and 2z^2>=0 so adding those two inequalities we get that the minimum value is 0??? is this not possible because xyz=32??

Ridhul Sambod - 3 years, 8 months ago

Log in to reply

Ya so 0 is not possible that's why it is not minimal.

Ruilin Wang - 1 year, 4 months ago

How did you show equality occurs at (4,2,4)

abhishek ravindra - 2 years, 7 months ago

Take x=y=z and the answer you get will be lesser.

Ashutosh Saboo - 6 years, 8 months ago

Log in to reply

But doing this so may not validate the proof

Figel Ilham - 6 years, 3 months ago
Cody Johnson
Sep 20, 2014

( x 2 y ) 2 0 x 2 + 4 x y + 4 y 2 + 2 z 2 8 x y + 2 z 2 (x-2y)^2\ge0\implies x^2+4xy+4y^2+2z^2\ge8xy+2z^2 ( z 4 ) 2 0 8 x y + 2 z 2 8 x y + 16 z 32 (z-4)^2\ge0\implies8xy+2z^2\ge8xy+16z-32 8 ( x y 2 z ) 2 0 8 x y + 16 z 32 96 8(\sqrt{xy}-\sqrt{2z})^2\ge0\implies8xy+16z-32\ge96 x 2 + 4 x y + 4 y 2 + 2 z 2 96 x^2+4xy+4y^2+2z^2\ge96 4 2 + 4 4 2 + 4 2 2 + 2 4 2 = 96 4^2+4\cdot4\cdot2+4\cdot2^2+2\cdot4^2=\boxed{96}

That's with sum of squares. By AM-GM, which is sum of squares in disguise,

( x + 2 y ) 2 + 2 z 2 ( 2 2 x y ) 2 + 2 z 2 = 8 x y + 2 z 2 8 x y + 2 ( 8 z 16 ) = 8 x y + 16 z 32 2 8 ( 16 ) x y z 32 = 3 ( 32 ) = 96 \begin{aligned} (x+2y)^2+2z^2&\ge(2\sqrt{2xy})^2+2z^2\\ &=8xy+2z^2\\ &\ge8xy+2(8z-16)\\ &=8xy+16z-32\\ &\ge2\sqrt{8(16)xyz}-32\\ &=3(32)=96 \end{aligned}

with equality at ( x , y , z ) = ( 4 , 2 , 4 ) (x,y,z)=(4,2,4) .

Cody Johnson - 6 years, 8 months ago

Log in to reply

It's not bad to use calculus to motivate an elementary solution.

Motivation for the z 2 8 z 16 z^2\ge8z-16 rather than, say z 2 2 z 1 z^2\ge2z-1 :

[ x 2 + 4 x y + 4 y 2 + 2 z 2 ] = < 2 x + 4 y , 4 x + 8 y , 4 z > \nabla[x^2+4xy+4y^2+2z^2]=\left<2x+4y,4x+8y,4z\right> [ x y z ] = < y z , z x , x y > \nabla[xyz]=\left<yz,zx,xy\right>

Lagrange multipliers suggests that

2 ( x + 2 y ) y z = 4 ( x + 2 y ) z x = 4 z x y \frac{2(x+2y)}{yz}=\frac{4(x+2y)}{zx}=\frac{4z}{xy}

From the first two equalities, x = 2 y x=2y . From the third with the first, z = 2 y z=2y . From x y z = 32 xyz=32 , ( x , y , z ) = ( 4 , 2 , 4 ) (x,y,z)=(4,2,4) . Lagrange multipliers suggests that this is the only equality case, so inequalities such as ( z 1 ) 2 0 (z-1)^2\ge0 or ( z 2 ) 2 0 (z-2)^2\ge0 won't seem as fruitful as ( z 4 ) 2 0 (z-4)^2\ge0 .

Cody Johnson - 6 years, 8 months ago

Using AM-GM inequality,

x 2 + 2 x y + 2 x y + 4 y 2 + z 2 + z 2 6 × 2 2 4 ( x y z ) 4 6 x^2+2xy+2xy+4y^2+z^2+z^2 \geq 6 \times \sqrt[6]{2*2*4*(xyz)^4}

x 2 + 4 x y + 4 y 2 + 2 z 2 6 × 2 2 2 2 ( 2 5 ) 4 6 \Rightarrow x^2+4xy+4y^2+2z^2 \geq 6 \times \sqrt[6]{2*2*2^2*(2^5)^{4}}

x 2 + 4 x y + 4 y 2 + 2 z 2 96 \Rightarrow x^2+4xy+4y^2+2z^2 \geq \boxed{96}

And the equality occurs at ( x , y , z ) ( 4 , 2 , 4 ) (x,y,z) \equiv (4,2,4) .

You must show that the equality indeed occurs. Most people forget about checking the equality case which is one of the most important parts in a maxima/minima finding problem.

Jubayer Nirjhor - 6 years, 8 months ago

Log in to reply

Late but edited.

Fahim Shahriar Shakkhor - 6 years, 8 months ago

Hello. Why do we need to show equality occurs?

Ram Keswani - 1 year, 11 months ago

Here's a technique for splitting the terms while applying AM-GM inequality. (I find this quite akin to balancing a chemical equation.)

Let each of the terms be split into a, b, c and d parts respectively.

x 2 + 4 x y + 4 y 2 + 2 z 2 = a a x 2 + b b 4 x y + c c 4 y 2 + d d 2 z 2 x^2 + 4xy + 4y^2 + 2z^2 = \dfrac{a}{a}x^2 + \dfrac{b}{b}4xy + \dfrac{c}{c}4y^2 + \dfrac{d}{d}2z^2

For using AM-GM inequality, the powers of x, y and z should be the same in the product of the terms. So, 2 a + b Power of x = 2 c + b Power of y = 2 d Power of z \underbrace{2a + b}_{\text{Power of } x} = \underbrace{2c + b}_{\text{Power of } y} = \underbrace{2d}_{\text{Power of } z} One possible solution is a = c = 1 , b = d = 2 a = c = 1, b = d= 2

Thus, the expression becomes: x 2 + 4 x y 2 + 4 x y 2 + 4 y 2 + 2 z 2 2 + 2 z 2 2 x^2 + \dfrac{4xy}{2} + \dfrac{4xy}{2} + 4y^2 + \dfrac{2z^2}{2} + \dfrac{2z^2}{2}


Using AM-GM Inequality, A M G M AM ≥ GM x 2 + 4 x y 2 + 4 x y 2 + 4 y 2 + 2 z 2 2 + 2 z 2 2 6 16 x 4 y 4 z 4 6 \dfrac{x^2 + \dfrac{4xy}{2} + \dfrac{4xy}{2} + 4y^2 + \dfrac{2z^2}{2} + \dfrac{2z^2}{2}}{6} ≥ \sqrt[6]{16 x^4y^4z^4} x 2 + 4 x y + 4 y 2 + 2 z 2 6 2 4 3 2 4 6 x^2 + 4xy + 4y^2 + 2z^2 ≥ 6 \sqrt[6]{2^4 32^4} x 2 + 4 x y + 4 y 2 + 2 z 2 96 x^2 + 4xy + 4y^2 + 2z^2 ≥ 96 So min value = 96 = \boxed{96} (when x = z = 4 , y = 2 x = z= 4, y = 2 )

Why it has to be equal ?(assuming that question is different from this , since in this one it's actually mentioned that product is 32 , so we try to get that in products section) . Also how about putting a=b=c=2 and d=3.

Hitesh Yadav - 6 months, 3 weeks ago

Log in to reply

We are given the value of x y z xyz , so we need something like ( x y z ) n (xyz)^n under the root to compute the GM.

I just equated as many variables possible to 1 to make the calculation easier. But it seems any other solution yields a value less than 96.

Shubhrajit Sadhukhan - 6 months, 2 weeks ago
Anubhav Mahapatra
Oct 27, 2017

There you go....Great question....Demanding quite some creativity....Post a few more harder problems..

great example's solution for beginners like me thanks

bank siri - 3 years, 4 months ago
Antonio Fanari
Sep 22, 2014

f ( x , y ) = x 2 + 2 x y + 4 y 2 + 2 z 2 = ( x + 2 y ) 2 + 2 z 2 = ( x + 2 y ) 2 + 32 2 x 2 y 2 ; f(x,y)=x^2+2xy+4y^2+2z^2 = (x+2y)^2+2z^2=(x+2y)^2+\frac {{32}^2} {x^2y^2};

we have imposed x y z = 32 ; z = 32 x y ; xyz=32;\;z=\frac {32}{xy};

g r a d ( f ) = 0 , grad(f) = 0,\; which leads to:

{ x + 2 y = 2 11 x 3 y 2 x + 2 y = 2 10 x 2 y 3 ( 1 ) \begin{cases}x+2y=\frac {2^{11}}{x^3y^2}\\x+2y=\frac {2^{10}}{x^2y^3}\end{cases}\;(1)

equating 2nd members of the two equations of ( 1 ) (1)\; , because 1st members are equal:

2 x 2 y 3 = x 3 y 2 ; x = 2 y ; 2x^2y^3=x^3y^2;\;x=2y; substituting in 1st equation of ( 1 ) : (1)\;:

x 6 = 2 12 ; x = ± 4 ; y = ± 2 x^6=2^{12};\;x^*=\pm 4;\;y*=\pm 2

f ( x , y ) f(x,y)\; is sum of all positive values, so has no maximum, so ( x , y ) (x^*,y^*)\; are points of minima, and the minimum is:

f ( x , y ) = 96 f(x^*,y^*)=\boxed {96}

Rahul Dandwate
Sep 20, 2014

We can also break the expression as

x 2 + 2 x y + 2 x y + 4 y 2 + z 2 + z 2 { x }^{ 2 }+2xy+2xy+4{ y }^{ 2 }+{ z }^{ 2 }+{ z }^{ 2 }

And then apply AM-GM inequality to it we get

x 2 + 4 x y + 4 y 2 + 2 z 2 96 { x }^{ 2 }+4xy+4{ y }^{ 2 }+2{ z }^{ 2 }\ge 96

Since x 2 + 4 x y + 4 y 2 + 2 z 2 = x 2 + 2 x y + 2 x y + 4 y 2 + z 2 + z 2 x^2 + 4xy + 4y^2 + 2z^2 = x^2 + 2xy + 2xy + 4y^2 + z^2 + z^2 and by AM-GM inequality :

x 2 + 2 x y + 2 x y + 4 y 2 + z 2 + z 2 6 16 x 4 y 4 z 4 6 = 96 x^2 + 2xy + 2xy + 4y^2 + z^2 + z^2 \ge 6 \sqrt[6]{16x^4y^4z^4} = \boxed{96}

Equality occurs when x = z = 4 x=z=4 and y = 2 y=2 .

Pratyush Pandey
Oct 15, 2016

We have (x + 2y)^2 ≥ 8xy with equality iff x = 2y. Hence (x + 2y)^2 + 2z^2 ≥ 256/z + 2z^2 with equality iff x = 2y. We have z^2 + 128/z - 48 = (z - 4)^2(z + 8)/z ≥ 0 with equality iff z = 4 (for positive z). Hence 256/z + 2z^2 ≥ 96 with equality iff z = 4. So the expression given has minimum value 96, achieved only at x = 4, y = 2, z = 4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...