Fairly straightforward

Calculus Level 3

Find the value of

0 1 2 ( 1 2 x 2 ) 3 2 d x \large \displaystyle \int_{0}^{\frac{1}{2}} \left(\frac{1}{2} - x^2 \right)^{\frac{3}{2}} dx

3 π 128 + 1 16 \dfrac{3\pi}{128}+\dfrac{1}{16} 3 4 1 8 \dfrac{\sqrt{3}}{4}-\dfrac{1}{8} 3 π 64 + 1 8 \dfrac{3\pi}{64}+\dfrac{1}{8} 3 8 1 16 \dfrac{\sqrt{3}}{8}-\dfrac{1}{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Dec 14, 2018

Let x = 1 2 sin t x = \dfrac{1}{\sqrt{2}} \sin t , then d x = 1 2 cos t dx = \dfrac{1}{\sqrt{2}} \cos t

The integral becomes

0 π 4 1 2 ( 1 2 cos 2 t ) ( 3 2 ) cos t d t \displaystyle \int_{0}^{\frac{\pi}{4}} \sqrt{\frac{1}{2}} ( \frac{1}{2} \cos^2 t)^{(\frac{3}{2})} \cos t \hspace{4pt} dt

= 1 4 0 π 4 cos 4 t d t = \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{4}} \cos^4 t \hspace{4pt} dt

= 1 4 0 π 4 ( 1 2 ( 1 + cos ( 2 t ) ) ) 2 d t = \frac{1}{4} \displaystyle \int_{0}^{\frac{\pi}{4}} ( \frac{1}{2} (1 + \cos( 2 t) ) )^2 \hspace{4pt} dt

= 1 16 0 π 4 ( 1 + 2 cos ( 2 t ) + cos 2 ( 2 t ) ) d t = \frac{1}{16} \displaystyle \int_{0}^{\frac{\pi}{4}} (1 + 2 \cos( 2 t) + \cos^2 (2t) ) \hspace{4pt} dt

= 1 16 0 π 4 ( 1 + 2 cos ( 2 t ) + 1 2 ( 1 + cos ( 4 t ) ) ) d t = \frac{1}{16} \displaystyle \int_{0}^{\frac{\pi}{4}} (1 + 2 \cos( 2 t) + \frac{1}{2} (1 + \cos( 4 t) ) )\hspace{4pt} dt

= 1 16 0 π 4 ( 3 2 + 2 cos ( 2 t ) + 1 2 cos ( 4 t ) ) d t = \frac{1}{16} \displaystyle \int_{0}^{\frac{\pi}{4}} (\frac{3}{2} + 2 \cos( 2 t) + \frac{1}{2} \cos( 4 t) ) \hspace{4pt} dt

= 1 16 ( 3 2 t + sin ( 2 t ) + 1 8 sin ( 4 t ) ) 0 π 4 = \frac{1}{16} ( \frac{3}{2} t + \sin( 2 t) + \frac{1}{8} \sin( 4 t) ) \large \Big|_{0}^{\frac{\pi}{4}}

= 1 16 ( 3 2 ( π 4 ) + 1 + 0 ) = \frac{1}{16} ( \frac{3}{2}( \frac{\pi}{4}) + 1+0 )

= 3 π 128 + 1 16 = \dfrac{3 \pi}{128} + \dfrac{1}{16}

Nice, I got lazy and used ais5 of integrals from Wikipedia involving an arcsin.

Peter van der Linden - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...